Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 117(3): 918-927, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742850

ABSTRACT

As large cities begin to overrun their landfill capacities, they begin to look for alternative locations to handle the waste stream. Seeing an opportunity to bring in revenue, rural communities offer to handle municipal waste in their landfills. However, many rural communities are also places of agricultural production, which are vulnerable to attacks by invasive insect species, which could be present in green yard waste, the component of municipal waste most likely to contain agriculturally harmful insect species. We used environmental DNA (eDNA) to determine whether green yard waste could be a pathway for invasive insect species to enter and establish in the landfill-receiving agricultural community. We identified several target species that could be in green yard waste coming from Vancouver, BC, Canada, to Central Washington State, USA. We sampled green yard waste from 3 sites every 2 weeks from June to October in 2019 and 2020. DNA was extracted from the nearly 400 samples and subjected to amplification with COI barcoding primers followed by sequencing to identify target insects in the samples. Sequence analyses identified 3 species from the target list: 2 species that are pests of deciduous tree fruits and a generalist root-feeding crop pest. This eDNA technique was useful in identifying potential invasive species in green yard waste and may prove to be an important tool informing policy on the movement of biological material across borders and stemming the spread of invasive species.


Subject(s)
DNA, Environmental , Introduced Species , Animals , DNA, Environmental/analysis , Washington , Insecta/genetics , British Columbia , Waste Disposal Facilities , DNA Barcoding, Taxonomic
2.
Environ Entomol ; 52(3): 436-445, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37119126

ABSTRACT

The Western cherry fruit fly, Rhagoletis indifferens (Curran), is a Tephritid fly in the Pacific Northwest and is known to infest native bitter cherry, Prunus emarginata (Douglas ex Hooker), which is distributed throughout the Cascade Mountain range. This species occupies temperate to alpine climates and exhibits overwintering adaptations of diapause and supercooling. Isothermal and differential scanning calorimetry were used to determine the effects of diapause chilling duration and post-chilling warm rearing on the metabolic rate and supercooling point of R. indifferens. Previous studies have included the effects of chilling duration on post-diapause development and emergence as well as on the levels of metabolic reserves. Metabolic rate of R. indifferens, was used to calculate the ability of this species to remain in diapause for more than 1 yr as well as predicting the potential effects of climate change on the future abundance and distribution. It was determined that R. indifferens could diapause for more than 1 yr based on the levels of metabolic reserves and metabolic rate.


Subject(s)
Diapause, Insect , Tephritidae , Animals , Drosophila , Northwestern United States , Acclimatization
3.
Front Insect Sci ; 2: 989673, 2022.
Article in English | MEDLINE | ID: mdl-38468813

ABSTRACT

How different macronutrients are utilized at various stages of pupal diapause and the effects of winter length on nutrient reserves remain poorly studied for most insects. Western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae), is a specialist on cherries in higher latitudes or elevations in western North America that exhibits a obligate pupal diapause requiring chilling before adult development can occur. We determined the relationship between metabolic reserves and diapause status in R. indifferens pupae, testing the hypotheses that lipids are the primary reserves utilized during diapause and that long periods of warmth deplete these reserves more than periods of cold. Effects of 0- to 20-week durations at 3°C and subsequent exposure to 23°C and 16:8 L:D (warm rearing conditions) for 0 to 7 weeks on lipid, protein, soluble carbohydrates, and glycogen reserves of R. indifferens pupae were determined. During diapause, lipid reserves were the primary source of energy utilized by R. indifferens, while protein and soluble carbohydrates levels were stable throughout diapause and thus less utilized. At post-diapause, glycogen levels fluctuated the most, indicating that lipid reserves were utilized to produce glycogen to support metabolism for adult fly development. Unchilled pupae did not deplete lipid reserves, unlike chilled pupae, likely because unchilled pupae remained in diapause. Rhagoletis indifferens may have evolved a nutrient utilization strategy typical of rigid diapausing insects in higher latitude environments.

4.
Environ Entomol ; 50(3): 706-712, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33822024

ABSTRACT

The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious pest of apple in North America that is subject to quarantine measures to prevent its spread to currently pest-free regions, including the tropics. How the fly may survive in warmer climates is unclear. Here, we studied the effects of exposing postchill puparia to simulated temperate and tropical environmental conditions on eclosion of R. pomonella from Washington State, U.S.A. Puparia were chilled for 0-30 wk at 3°C and then held under four postchill conditions: A = 23°C, 16:8 L:D, 40% RH; B = 26°C, 12:12 L:D, 80% RH; C = 26°C, 16:8 L:D, 80% RH; and D = 23°C, 12:12 L:D, 40% RH, with B and D representing tropical conditions and A and C temperate conditions. Within each chill duration, total numbers of flies eclosed were equally high in tropical treatment B and temperate treatment C, while they were lower in treatments A and D. Mean weeks of the first eclosion in treatments B and C were earlier than in treatment D; mean week of peak eclosion and 50% eclosion in treatments A, B, and C were earlier than in treatment D. Eclosion spans in treatments A, B, and D were generally shorter than in treatment C. Results suggest that if introduced into a humid tropical country, R. pomonella puparia from Washington State could produce adult flies, regardless of chill duration or lack of chilling during the pupal stage, but whether flies could establish there would require further study.


Subject(s)
Diptera , Tephritidae , Animals , North America , Pupa , Tropical Climate , Washington
5.
Environ Entomol ; 49(3): 660-666, 2020 06 13.
Article in English | MEDLINE | ID: mdl-32333007

ABSTRACT

Western cherry fruit fly, Rhagoletis indifferens Curran, is a quarantine pest of sweet cherries in the Pacific Northwest of the United States that overwinters as diapausing pupae. Eclosion responses of R. indifferens puparia to different low temperature durations and postdiapause conditions affect the pest status of the fly. Here, we determined the effects of holding R. indifferens puparia at 3°C for 0, 1, 2, 5, 10, 15, and 20 wk on adult eclosion times and rates at two simulated temperate and two simulated tropical climate treatments over 40 wk. When puparia were chilled 0, 1, or 2 wk, adult eclosion across the four climate treatments displayed a bimodal distribution with low eclosion at 3 wk and high eclosion at 23-35 wk. When puparia were chilled ≤ 10 wk, there was a weaker bimodal distribution. However, when puparia were chilled 15-30 wk, eclosion was more synchronous and occurred at 5-7 wk across the four postchill climate treatments. Eclosion was greater at a postdiapause temperature of 26°C than 23°C. Timing to 50% eclosion was faster at longer photoperiod (16:8 L:D) than shorter (12:12 L:D). The bimodality of eclosion in respect to the duration of low temperature exposure may be indicative of univoltine insect species with obligate diapause that may span over two seasons.


Subject(s)
Tephritidae , Animals , Cold Temperature , Northwestern United States , Pupa , Temperature
6.
J Econ Entomol ; 113(1): 306-314, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31579914

ABSTRACT

Native to Asia, the spotted lanternfly, Lycorma delicatula (White), is an emerging pest of many commercially important plants in Korea, Japan, and the United States. Determining its potential distribution is important for proactive measures to protect commercially important commodities. The objective of this study was to assess the establishment risk of L. delicatula globally and in the United States using the ecological niche model MAXENT, with a focus on Washington State (WA), where large fruit industries exist. The MAXENT model predicted highly suitable areas for L. delicatula in Asia, Oceania, South America, North America, Africa, and Europe, but also predicted that tropical habitats are not suitable for its establishment, contrary to published information. Within the United States, the MAXENT model predicted that L. delicatula can establish in most of New England and the mid-Atlantic states, the central United States and the Pacific Coast states, including WA. If introduced, L. delicatula is likely to establish in fruit-growing regions of the Pacific Northwest. The most important environmental variables for predicting the potential distribution of L. delicatula were mean temperature of driest quarter, elevation, degree-days with a lower developmental threshold value of 11°C, isothermality, and precipitation of coldest quarter. Results of this study can be used by regulatory agencies to guide L. delicatula surveys and prioritize management interventions for this pest.


Subject(s)
Hemiptera , Africa , Animals , Asia , Europe , Japan , North America , Republic of Korea , South America , United States , Washington
7.
PLoS One ; 14(6): e0217071, 2019.
Article in English | MEDLINE | ID: mdl-31158239

ABSTRACT

Well-adapted and abundant insect pests can negatively affect agricultural production. We modeled the abundance of two Rhagoletis fly (Diptera: Tephritidae) pests, apple maggot fly, Rhagoletis pomonella (Walsh), and western cherry fruit fly, Rhagoletis indifferens Curran, in Washington State (WA), U.S.A. using biologically relevant environmental variables. We tested the hypothesis that abundance of the two species is influenced by different environmental variables, based on the fact that these two species evolved in different environments, have different host plants, and that R. pomonella is an introduced pest in WA while R. indifferens is native. We collected data on fly and host plant abundance at 61 randomly selected sites across WA in 2015 and 2016. We obtained land-cover, climate, and elevation data from online sources and used these data to derive relevant landscape variables and modeled fly abundance using generalized linear models. For R. pomonella, relatively high winter mean minimum temperature, low elevation, and developed land-cover were the top variables positively related to fly abundance. In contrast, for R. indifferens, the top variables related to greater fly abundance were high Hargreaves climatic moisture and annual heat-moisture deficits (indication of drier habitats), high host plant abundance, and developed land-cover. Our results identify key environmental variables driving Rhagoletis fly abundance in WA and can be used for understanding adaptation of insects to non-native and native habitats and for assisting fly quarantine and management decisions.


Subject(s)
Insect Control/statistics & numerical data , Models, Statistical , Tephritidae , Adaptation, Physiological , Animals , Environment , Tephritidae/physiology , Washington
8.
J Econ Entomol ; 111(3): 1275-1284, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29528438

ABSTRACT

The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest of cherries (Prunus spp.) (Rosaceae) in Europe and Asia. In 2016, R. cerasi was detected in Ontario, Canada, and in 2017 in New York State, USA, the first records of this pest in North America. The initial detections in Canada caused concern for the major cherry-growing states of Michigan, Washington, Oregon, and California in the United States. Establishment of R. cerasi in the United States could restrict cherry exports to other markets and increase costs needed for fly control, but it is unknown if R. cerasi can establish in U.S. commercial cherry regions. Here, we used the CLIMEX ecological niche model to determine the risk of establishment of R. cerasi in the United States and globally. Within the United States under a no-irrigation scenario, R. cerasi would establish in the East and West Coasts; however, under an irrigation scenario, its distribution would expand to the major cherry-growing regions in the interior of central and eastern Washington and in California. Results also showed that if introduced, R. cerasi would likely establish in eastern China, Japan, the Koreas, Australia, New Zealand, South America, South Africa, Mexico, and Canada. Host plant (Prunus spp. and Lonicera spp. [Caprifoliaceae]) presence, although not included in models, would affect fly establishment. Our results stress the importance of surveying for R. cerasi to prevent its spread and establishment within the United States and other countries.


Subject(s)
Animal Distribution , Ecosystem , Prunus , Tephritidae/physiology , Animals , Food Chain , Models, Biological , Population Dynamics , Prunus/physiology , United States
9.
Environ Entomol ; 47(2): 448-456, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29471543

ABSTRACT

The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is a primary pest of stone fruits that cause significant economic damage. Larvae, which enter the host plant through shoot tips, damage shoots, and ripe fruits. Native to Asia, this pest now occurs in many fruit-growing countries, including the United States and Canada. Though the pest was previously reported from many states within the United States, its current distribution and the environmental variables that influence its distribution are not properly identified. The objectives of this study were to 1) identify the environmental factors associated with G. molesta current distribution, 2) predict the current distribution of G. molesta in Washington State (WA) using Maxent and Climex models, 3) identify those areas within WA best suited for establishment of pest free zones, areas of low pest prevalence, and pest free production areas, and 4) identify regions most at risk for further expansion of G. molesta populations as a function of climate change. The current models predicted a small portion of central WA is suitable to support G. molesta, which is consistent with observed distributions. However, climate change models predict that more areas will become suitable for the pest. These results indicate that action should be taken to monitor and reduce current populations of G. molesta to stem its potential expansion into the major commercial tree fruit production areas in the state.


Subject(s)
Introduced Species , Models, Theoretical , Moths , Animals , Climate Change , Geography , Risk Assessment , Washington
10.
J Insect Sci ; 17(4)2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28973489

ABSTRACT

Codling moth (Cydia pomonella L.) is an internal feeding pest of apples and can cause substantial economic losses to fruit growers due to larval feeding which in turn degrades fruit quality and can result in complete crop loss if left uncontrolled. Although this pest originally developed in central Asia, it was not known to occur in China until 1953. For the first three decades the spread of codling moth within China was slow. Within the last three decades, addition of new commercial apple orchards and improved transportation, this pest has spread to over 131 counties in seven provinces in China. We developed regional (China) and global ecological niche models using MaxEnt to identify areas at highest potential risk of codling moth establishment and spread. Our objectives were to 1) predict the potential distribution of codling moth in China, 2) identify the important environmental factors associated with codling moth distribution in China, and 3) identify the different stages of invasion of codling moth in China. Human footprint, annual temperature range, precipitation of wettest quarter, and degree days ≥10 °C were the most important predictors associated with codling moth distribution. Our analysis identified areas where codling moth has the potential to establish, and mapped the different stages of invasion (i.e., potential for population stabilization, colonization, adaptation, and sink) of codling moth in China. Our results can be used in effective monitoring and management to stem the spread of codling moth in China.


Subject(s)
Introduced Species , Moths , Animals , China , Geography , Models, Theoretical
11.
Environ Entomol ; 46(3): 708-713, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28369322

ABSTRACT

Western cherry fruit fly, Rhagoletis indifferens (Curran) (Diptera: Tephritidae), is a serious pest of cherries (Prunus spp.) in the Pacific Northwest of the United States. Previous research suggests that R. indifferens is unlikely to establish in commercial cherry production areas in California and in tropical export markets because cold temperatures, below 5 °C, in those regions appear insufficient to complete diapause. However, it is unclear how prolonged absence of cold exposure affects diapause termination in R. indifferens. Here, we examined this question by exposing R. indifferens pupae for 40 wk to simulated temperate and tropical conditions of 23 or 26 °C, 40 or 80% RH, and a photoperiod of 16:8 or 12:12 (L:D) h. Eclosion patterns among fly groups in the four conditions did not differ. For all groups, fly eclosion from pupae not exposed to cold exhibited a bimodal distribution. The first major peak, comprising 3.2% of the total fly emergence, occurred at 1-10 wk. The second major peak, comprising the remaining 96.8%, occurred at a mode of ∼30 wk. Based on responses to no cold and cold (3 ± 1.5 °C) exposures, there were three distinct pupal diapause groups: the first eclosion group was likely nondiapausing pupae; the second eclosion group was likely diapausing pupae; a third group that remained viable but did not produce adults after 40 wk may represent prolonged dormancy pupae. We suggest that eclosion of adults after prolonged absence of cold exposure needs to be incorporated into models for potential fly establishment in warm climates.


Subject(s)
Cold Temperature , Tephritidae/growth & development , Animals , Climate Change , Population Dynamics , Pupa/growth & development , Random Allocation , Seasons , Washington
12.
J Econ Entomol ; 109(5): 2043-2053, 2016 10.
Article in English | MEDLINE | ID: mdl-27452001

ABSTRACT

The apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a major quarantine pest of apples (Malus domestica Borkhausen) in the United States. Apple maggot is found only in North America and negatively impacts the apple industry in the western United States by reducing grower access to export markets. To reduce the threat of apple maggot to export countries and to facilitate the movement of commercial apples, an assessment of potential risk of establishment of apple maggot is needed to predict which regions are suitable or unsuitable for the fly. We used a correlative niche model MaxEnt and a mechanistic model CLIMEX to model global potential risk of establishment of apple maggot. The MaxEnt model was developed by integrating apple maggot occurrences with global climatic variables. Apple (a major host of apple maggot) climatic suitability was used as an additional variable to include species interactions in the MaxEnt model. The CLIMEX model was developed using published apple maggot physiological tolerance thresholds. Both the MaxEnt and CLIMEX models correctly predicted the known distribution of apple maggot in North America, met biological expectations when projected to the world, and mostly agreed on climatic suitability worldwide for the fly. Degree-days at 6.7 °C, elevation, precipitation seasonality, and apple climatic suitability were the most important predictors associated with apple maggot distribution in North America. Our results can be used to make science-based international trade decisions by policy makers, and for monitoring apple maggot potential introductions in countries where it currently does not occur.


Subject(s)
Animal Distribution , Insect Control/methods , Tephritidae/physiology , Animals , Climate , Models, Biological
13.
PLoS One ; 11(7): e0159450, 2016.
Article in English | MEDLINE | ID: mdl-27415625

ABSTRACT

The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs.


Subject(s)
Ascomycota/pathogenicity , Mangifera/microbiology , Plant Diseases/statistics & numerical data , Animals , Coleoptera , Plant Diseases/etiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Rain , Risk Factors , Seasons , Temperature
14.
J Econ Entomol ; 108(4): 1708-19, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26470312

ABSTRACT

Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and correlative niche models to quantify and map the global patterns of the potential for establishment of codling moth (Cydia pomonella L.), a major pest of apples, peaches, pears, and other pome and stone fruits, and a quarantine pest in countries where it currently does not occur. The mechanistic model CLIMEX was calibrated using species-specific physiological tolerance thresholds, whereas the correlative model MaxEnt used species occurrences and climatic spatial data. Projected potential distribution from both models conformed well to the current known distribution of codling moth. None of the models predicted suitable environmental conditions in countries located between 20°N and 20°S potentially because of shorter photoperiod, and lack of chilling requirement (<60 d at ≤10°C) in these areas for codling moth to break diapause. Models predicted suitable conditions in South Korea and Japan where codling moth currently does not occur but where its preferred host species (i.e., apple) is present. Average annual temperature and latitude were the main environmental variables associated with codling moth distribution at global level. The predictive models developed in this study present the global risk of establishment of codling moth, and can be used for monitoring potential introductions of codling moth in different countries and by policy makers and trade negotiators in making science-based decisions.


Subject(s)
Animal Distribution , Introduced Species , Moths/physiology , Animals , Models, Biological , Photoperiod , Temperature
15.
J Insect Sci ; 152015.
Article in English | MEDLINE | ID: mdl-26106089

ABSTRACT

The western cherry fruit fly is an economically important pest of sweet cherries in the western United States. The potential of this pest to establish and spread in areas in which it is not currently present has been the focus of recent research. Most published information on the thermal tolerance and optimal thermal range of this pest has focused primarily on the diapausing pupae and predictive phenology models. Microrespirometry and differential calorimetry can be useful tools in describing the thermotolerance and optimal thermal range of insects. This methodology was employed to investigate the effects of western cherry fruit fly adult age on the optimal thermal range. Newly emerged flies exhibited the widest optimal thermal range spanning from 6.6 to 42.2°C for a total range of 35.8°C during heating scans of 0.4°C/min from 2 to 50°C. This range diminished as the flies aged, with the shortest span observed with 28-d-old flies ranging from 10.5 to 37.8°C, a span of 27.2°C. Measurements of heat rate and oxygen consumption at isothermal, or static, temperatures indicated that all flies could survive exposure to 40°C for at least 20 min, and that metabolism was greatly reduced, with a concomitant reduction in oxygen consumption rate at 40 to 42°C. All flies exhibited a heat rate and oxygen consumption rate of zero when exposed to 45 and 50°C. The loss of thermotolerance in adult flies can influence its ability to establish and spread in climates where daily temperatures exceed the optimal thermal range of this species.


Subject(s)
Temperature , Tephritidae/physiology , Animals , Female , Male , Oxygen Consumption , Prunus avium/parasitology , Tephritidae/metabolism
16.
J Econ Entomol ; 107(3): 1032-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25026662

ABSTRACT

Sweet cherries, Prunus avium (L.) L., grown in the western United States are exported to many countries around the world. Some of these countries have enforced strict quarantine rules and trade restrictions owing to concerns about the potential establishment and subsequent spread of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), a major quarantine pest of sweet cherry. We used 1) niche models (CLIMEX and MaxEnt) to map the climatic suitability, 2) North Carolina State University-Animal and Plant Health Inspection Service Plant Pest Forecasting System to examine chilling requirement, and 3) host distribution and availability to assess the potential for establishment of R. indifferens in areas of western North America where it currently does not exist and eight current or potential fresh sweet cherry markets: Colombia, India, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam. Results from niche models conformed well to the current distribution of R. indifferens in western North America. MaxEnt and CLIMEX models had high performance and predicted climatic suitability in some of the countries (e.g., Andean range in Colombia and Venezuela, northern and northeastern India, central Taiwan, and parts of Vietnam). However, our results showed no potential for establishment of R. indifferens in Colombia, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam when the optimal chilling requirement to break diapause (minimum temperature < or = 3 degree C for at least 15 wk) was used as the criterion for whether establishment can occur. Furthermore, these countries have no host plant species available for R. indifferens. Our results can be used to make scientifically informed international trade decisions and negotiations by policy makers.


Subject(s)
Animal Distribution , Ecosystem , Food Chain , Tephritidae/physiology , Animals , Asia , Fruit/growth & development , Geographic Mapping , Models, Biological , North America , Prunus/growth & development , South America
17.
J Therm Biol ; 42: 9-14, 2014 May.
Article in English | MEDLINE | ID: mdl-24802143

ABSTRACT

The oxygen and capacity limitation of thermal tolerance (OCLTT) has been established in aquatic insect larvae, but OCLTT has not been shown to generally apply to terrestrial insects. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling diapausing codling moth, a quarantine pest in walnuts, but treatment requires long times and the killing mechanism is unknown. In this study, the effects of temperature and modified atmospheres on metabolism in diapausing 5th instar codling moth (Cydia pomonella) was investigated with multi-channel differential scanning calorimeters, one equipped with an oxygen sensor. O2 consumption and metabolic heat rates in air were measured simultaneously at isothermal temperatures from 5 to 50°C at 5°C intervals. Both rates increased with increasing temperatures from 5 to 40°C. The ratio of metabolic heat rate to O2 consumption rate at temperatures ≤40°C shows that a portion of the metabolic heat is from normal anabolic reactions of metabolism. At 45 and 50°C in air, O2 consumption and metabolic heat rates dropped to near zero. These results indicate that treatment of walnuts in air at >45°C for a short period of time (minutes) is effective in killing diapausing 5th instar codling moth larvae. Continuous heating scans at 0.4°C/min were used to measure metabolic heat rates from 10 to 50°C with air and modified atmospheres with lowered oxygen and high carbon dioxide. A rapid increase was observed in heat rates above 40°C in scans with O2≥11%. Taken together with the isothermal results showing no metabolic heat production or oxygen uptake at 45 and 50°C, these results demonstrate that thermal damage to cell membranes and loss of control of oxidation reactions is the lethal mechanism at high temperature when O2≥11%. The data from scans with O2≤2% and high CO2 show the effects of oxygen limitation as postulated by the OCLTT. However, CO2 anesthesia appears to protect larvae from oxygen limitation at high temperature. These results show that treatment of walnuts in air at temperatures >45°C will rapidly kill diapausing 5th instar codling moths.


Subject(s)
Moths/metabolism , Temperature , Animals , Atmosphere , Carbon Dioxide/toxicity , Female , Insect Control/methods , Larva/metabolism , Male , Moths/growth & development , Oxygen/toxicity
18.
J Econ Entomol ; 107(1): 11-28, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24665680

ABSTRACT

The North American Plant Protection Organization (NAPPO) is an organization comprising plant protection regulatory officials of the three signatory countries: the United States, Canada, and México. NAPPO develops Regional Standards for Phytosanitary Measures (RSPMs) as well as discussion papers on important issues related to plant protection. The Fruit Panel of NAPPO organized a Technical Assistance Group (TAG) to develop a discussion paper on the status of pest species of Rhagoletis (Diptera: Tephritidae) within the NAPPO countries. As regulations are developed to prevent the spread of these pests both within and outside of the NAPPO countries, it was important to understand the pest status of these species. This article reviews the basic biology, host range, distribution, potential to spread, management, and regulatory status of pest species of Rhagoletis within the NAPPO countries.


Subject(s)
Crops, Agricultural , Insect Control/organization & administration , Tephritidae , Animals , North America
19.
Proc Natl Acad Sci U S A ; 110(17): 6931-6, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23569222

ABSTRACT

Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z-autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation.


Subject(s)
Adaptation, Biological/genetics , Evolution, Molecular , Moths/genetics , Sex Chromosomes/genetics , Translocation, Genetic/genetics , Animals , Base Sequence , Chromosomes, Artificial, Bacterial , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Physical Chromosome Mapping , Sequence Analysis, DNA
20.
J Econ Entomol ; 106(1): 520-3, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23448069

ABSTRACT

The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold storage conditions and held under short day lengths could not break diapause and emerge in sufficient numbers to establish a minimum viable population. This study expands the in-fruit work by examining the ability of codling moth to establish a laboratory population under a short photoperiod of 12:12 (L:D) h, as compared with a long photoperiod of 16:8 (L:D) h. Codling moth larvae were collected from field infested fruits in 2010 and 2011. Moths were collected from the infested fruits and separated into two groups representing the two daylength conditions. In total, 1,004 larvae were monitored for adult emergence and ability to generate a subsequent population. Larvae held under the photoperiod of 12:12 (L:D) h generated only one moth in the 2 yr period, whereas larvae held under the photoperiod of 16:8 (L:D) h generated 186 females and 179 males, that sustained subsequent generations on artificial diet under laboratory conditions. These results indicate that under controlled environmental conditions, codling moth cannot complete diapause and emerge in sufficient numbers to sustain a viable population when held under a short photoperiod.


Subject(s)
Moths/physiology , Photoperiod , Tropical Climate , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...