Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38328074

ABSTRACT

Scientific progress depends on reliable and reproducible results. Progress can also be accelerated when data are shared and re-analyzed to address new questions. Current approaches to storing and analyzing neural data typically involve bespoke formats and software that make replication, as well as the subsequent reuse of data, difficult if not impossible. To address these challenges, we created Spyglass, an open-source software framework that enables reproducible analyses and sharing of data and both intermediate and final results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard and includes pipelines for several core analyses in neuroscience, including spectral filtering, spike sorting, pose tracking, and neural decoding. It can be easily extended to apply both existing and newly developed pipelines to datasets from multiple sources. We demonstrate these features in the context of a cross-laboratory replication by applying advanced state space decoding algorithms to publicly available data. New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c: https://spyglass.hhmi.2i2c.cloud/.

2.
Sci Rep ; 10(1): 20851, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257721

ABSTRACT

Anatomic evaluation is an important aspect of many studies in neuroscience; however, it often lacks information about the three-dimensional structure of the brain. Micro-CT imaging provides an excellent, nondestructive, method for the evaluation of brain structure, but current applications to neurophysiological or lesion studies require removal of the skull as well as hazardous chemicals, dehydration, or embedding, limiting their scalability and utility. Here we present a protocol using eosin in combination with bone decalcification to enhance contrast in the tissue and then employ monochromatic and propagation phase-contrast micro-CT imaging to enable the imaging of brain structure with the preservation of the surrounding skull. Instead of relying on descriptive, time-consuming, or subjective methods, we develop simple quantitative analyses to map the locations of recording electrodes and to characterize the presence and extent of hippocampal brain lesions.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , X-Ray Microtomography/methods , Animals , Eosine Yellowish-(YS)/pharmacology , Hippocampus/diagnostic imaging , Imaging, Three-Dimensional/methods , Male , Prostheses and Implants , Rats , Rats, Long-Evans , Skull
3.
Nature ; 543(7647): 719-722, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28358077

ABSTRACT

During spatial navigation, neural activity in the hippocampus and the medial entorhinal cortex (MEC) is correlated to navigational variables such as location, head direction, speed, and proximity to boundaries. These activity patterns are thought to provide a map-like representation of physical space. However, the hippocampal-entorhinal circuit is involved not only in spatial navigation, but also in a variety of memory-guided behaviours. The relationship between this general function and the specialized spatial activity patterns is unclear. A conceptual framework reconciling these views is that spatial representation is just one example of a more general mechanism for encoding continuous, task-relevant variables. Here we tested this idea by recording from hippocampal and entorhinal neurons during a task that required rats to use a joystick to manipulate sound along a continuous frequency axis. We found neural representation of the entire behavioural task, including activity that formed discrete firing fields at particular sound frequencies. Neurons involved in this representation overlapped with the known spatial cell types in the circuit, such as place cells and grid cells. These results suggest that common circuit mechanisms in the hippocampal-entorhinal system are used to represent diverse behavioural tasks, possibly supporting cognitive processes beyond spatial navigation.


Subject(s)
Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Hippocampus/cytology , Hippocampus/physiology , Neural Pathways/physiology , Sound , Spatial Navigation/physiology , Acoustic Stimulation , Animals , Auditory Perception/physiology , Cognition/physiology , Grid Cells/physiology , Male , Models, Neurological , Place Cells/physiology , Rats , Rats, Long-Evans , Space Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...