Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(5): e0362823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38497714

ABSTRACT

During the SARS-CoV-2 pandemic, many countries directed substantial resources toward genomic surveillance to detect and track viral variants. There is a debate over how much sequencing effort is necessary in national surveillance programs for SARS-CoV-2 and future pandemic threats. We aimed to investigate the effect of reduced sequencing on surveillance outcomes in a large genomic data set from Switzerland, comprising more than 143k sequences. We employed a uniform downsampling strategy using 100 iterations each to investigate the effects of fewer available sequences on the surveillance outcomes: (i) first detection of variants of concern (VOCs), (ii) speed of introduction of VOCs, (iii) diversity of lineages, (iv) first cluster detection of VOCs, (v) density of active clusters, and (vi) geographic spread of clusters. The impact of downsampling on VOC detection is disparate for the three VOC lineages, but many outcomes including introduction and cluster detection could be recapitulated even with only 35% of the original sequencing effort. The effect on the observed speed of introduction and first detection of clusters was more sensitive to reduced sequencing effort for some VOCs, in particular Omicron and Delta, respectively. A genomic surveillance program needs a balance between societal benefits and costs. While the overall national dynamics of the pandemic could be recapitulated by a reduced sequencing effort, the effect is strongly lineage-dependent-something that is unknown at the time of sequencing-and comes at the cost of accuracy, in particular for tracking the emergence of potential VOCs.IMPORTANCESwitzerland had one of the most comprehensive genomic surveillance systems during the COVID-19 pandemic. Such programs need to strike a balance between societal benefits and program costs. Our study aims to answer the question: How would surveillance outcomes have changed had we sequenced less? We find that some outcomes but also certain viral lineages are more affected than others by sequencing less. However, sequencing to around a third of the original effort still captured many important outcomes for the variants of concern such as their first detection but affected more strongly other measures like the detection of first transmission clusters for some lineages. Our work highlights the importance of setting predefined targets for a national genomic surveillance program based on which sequencing effort should be determined. Additionally, the use of a centralized surveillance platform facilitates aggregating data on a national level for rapid public health responses as well as post-analyses.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , COVID-19/diagnosis , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , Switzerland/epidemiology , Genome, Viral/genetics , Epidemiological Monitoring , Pandemics , Phylogeny
2.
Front Public Health ; 11: 1289945, 2023.
Article in English | MEDLINE | ID: mdl-38074768

ABSTRACT

The COVID-19 pandemic has exemplified the importance of interoperable and equitable data sharing for global surveillance and to support research. While many challenges could be overcome, at least in some countries, many hurdles within the organizational, scientific, technical and cultural realms still remain to be tackled to be prepared for future threats. We propose to (i) continue supporting global efforts that have proven to be efficient and trustworthy toward addressing challenges in pathogen molecular data sharing; (ii) establish a distributed network of Pathogen Data Platforms to (a) ensure high quality data, metadata standardization and data analysis, (b) perform data brokering on behalf of data providers both for research and surveillance, (c) foster capacity building and continuous improvements, also for pandemic preparedness; (iii) establish an International One Health Pathogens Portal, connecting pathogen data isolated from various sources (human, animal, food, environment), in a truly One Health approach and following FAIR principles. To address these challenging endeavors, we have started an ELIXIR Focus Group where we invite all interested experts to join in a concerted, expert-driven effort toward sustaining and ensuring high-quality data for global surveillance and research.


Subject(s)
COVID-19 , Animals , Humans , COVID-19/epidemiology , Pandemics , Capacity Building , Information Dissemination
3.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: mdl-37171846

ABSTRACT

The Swiss Pathogen Surveillance Platform (SPSP) is a shared secure surveillance platform between human and veterinary medicine, to also include environmental and foodborne isolates. It enables rapid and detailed transmission monitoring and outbreak surveillance of pathogens using whole genome sequencing data and associated metadata. It features controlled data access, complex dynamic queries, dedicated dashboards and automated data sharing with international repositories, providing actionable results for public health and the vision to improve societal well-being and health.


Subject(s)
Genome, Bacterial , One Health , Humans , Switzerland/epidemiology , Metadata , Genomics/methods
5.
BMC Bioinformatics ; 19(Suppl 14): 420, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30453987

ABSTRACT

BACKGROUND: Antibiotic resistance and its rapid dissemination around the world threaten the efficacy of currently-used medical treatments and call for novel, innovative approaches to manage multi-drug resistant infections. Phage therapy, i.e., the use of viruses (phages) to specifically infect and kill bacteria during their life cycle, is one of the most promising alternatives to antibiotics. It is based on the correct matching between a target pathogenic bacteria and the therapeutic phage. Nevertheless, correctly matching them is a major challenge. Currently, there is no systematic method to efficiently predict whether phage-bacterium interactions exist and these pairs must be empirically tested in laboratory. Herein, we present our approach for developing a computational model able to predict whether a given phage-bacterium pair can interact based on their genome. RESULTS: Based on public data from GenBank and phagesDB.org, we collected more than a thousand positive phage-bacterium interactions with their complete genomes. In addition, we generated putative negative (i.e., non-interacting) pairs. We extracted, from the collected genomes, a set of informative features based on the distribution of predictive protein-protein interactions and on their primary structure (e.g. amino-acid frequency, molecular weight and chemical composition of each protein). With these features, we generated multiple candidate datasets to train our algorithms. On this base, we built predictive models exhibiting predictive performance of around 90% in terms of F1-score, sensitivity, specificity, and accuracy, obtained on the test set with 10-fold cross-validation. CONCLUSION: These promising results reinforce the hypothesis that machine learning techniques may produce highly-predictive models accelerating the search of interacting phage-bacteria pairs.


Subject(s)
Computational Biology/methods , Data Analysis , Genomics , Machine Learning , Algorithms , Bacteria/virology , Bacteriophages/genetics , Proteins/chemistry , Species Specificity
6.
Methods Cell Biol ; 129: 191-209, 2015.
Article in English | MEDLINE | ID: mdl-26175440

ABSTRACT

Centrioles and basal bodies (referred to hereafter as centrioles for simplicity) are microtubule-based cylindrical organelles that are typically ∼450-nm long and ∼250nm in diameter. The centriole is composed of three distinct regions: the distal part characterized by microtubule doublets, the central core that harbors microtubule triplets, which are also present in the proximal part that also contains the cartwheel, a structure crucial for centriole assembly. The cartwheel was initially revealed by conventional electron microscopy of resin-embedded samples and is thought to impart the near universal ninefold symmetry of centrioles. Deciphering the native architecture of the cartwheel has proven challenging owing to its small dimensions and the difficulties in isolating it. Here, we present a method to purify and analyze the structure of the exceptionally long Trichonympha centriole by cryotomography and subtomogram averaging. Using this method, we revealed the native architecture of the proximal cartwheel-containing region at ∼40Å-resolution. This method can be applied as a general strategy for uncovering the structure of centrioles in other species.


Subject(s)
Centrioles/ultrastructure , Cell Fractionation/methods , Cryoelectron Microscopy , Electron Microscope Tomography , Hypermastigia , Imaging, Three-Dimensional
7.
Elife ; 4: e04810, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25929283

ABSTRACT

All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism.


Subject(s)
Adaptation, Physiological , Caenorhabditis elegans/metabolism , Embryo, Nonmammalian/metabolism , Respiratory Rate/physiology , Animals , Biological Evolution , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Cell Division , Electron Transport/physiology , Embryo, Nonmammalian/cytology , Mitosis , Oxidative Phosphorylation , Protein Structure, Tertiary , Temperature
8.
Curr Biol ; 23(17): 1620-8, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-23932403

ABSTRACT

BACKGROUND: Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood. More generally, a high-resolution view of the proximal region of the centriole is lacking, thus limiting understanding of the underlying assembly mechanisms. RESULTS: We report the complete architecture of the Trichonympha centriole proximal region using cryotomography. The resulting 3D map reveals several features, including additional densities in the cartwheel that exhibit a 9-fold symmetrical arrangement, as well as the structure of the Pinhead and the A-C linker that connect to microtubules. Moreover, we uncover striking chiral features that might impart directionality to the entire centriole. Furthermore, we identify Trichonympha SAS-6 and demonstrate that it localizes to the cartwheel in vivo. CONCLUSIONS: Our work provides unprecedented insight into the architecture of the centriole proximal region, which is key for a thorough understanding of the mechanisms governing centriole assembly.


Subject(s)
Centrioles , Animals , Hypermastigia/cytology , Molecular Sequence Data
9.
PLoS Comput Biol ; 8(9): e1002686, 2012.
Article in English | MEDLINE | ID: mdl-23028284

ABSTRACT

Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.


Subject(s)
Brain/metabolism , Energy Metabolism/physiology , Lactic Acid/metabolism , Models, Neurological , NAD/metabolism , Neurons/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Animals , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...