Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 447, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536522

ABSTRACT

BACKGROUND: Methane (CH4) emissions from rumen fermentation are a significant contributor to global warming. Cattle with high CH4 emissions tend to exhibit lower efficiency in milk and meat production, as CH4 production represents a loss of the gross energy ingested by the animal. The objective of this study was to investigate the taxonomic and functional composition of the rumen microbiome associated with methane yield phenotype in dairy cattle raised in tropical areas. METHODS AND RESULTS: Twenty-two Girolando (F1 Holstein x Gyr) heifers were classified based on their methane yield (g CH4 / kg dry matter intake (DMI)) as High CH4 yield and Low CH4 yield. Rumen contents were collected and analyzed using amplicon sequencing targeting the 16 and 18S rRNA genes. The diversity indexes showed no differences for the rumen microbiota associated with the high and low methane yield groups. However, the sparse partial least squares discriminant analysis (sPLS-DA) revealed different taxonomic profiles of prokaryotes related to High and Low CH4, but no difference was found for protozoa. The predicted functional profile of both prokaryotes and protozoa differed between High- and Low CH4 groups. CONCLUSIONS: Our results suggest differences in rumen microbial composition between CH4 yield groups, with specific microorganisms being strongly associated with the Low (e.g. Veillonellaceae_UCG - 001) and High (e.g., Entodinium) CH4 groups. Additionally, specific microbial functions were found to be differentially more abundant in the Low CH4 group, such as K19341, as opposed to the High CH4 group, where K05352 was more prevalent. This study reinforces that identifying the key functional niches within the rumen is vital to understanding the ecological interplay that drives methane production.


Subject(s)
Diet , Microbiota , Cattle , Animals , Female , Methane/metabolism , Rumen/metabolism , Tropical Climate , Milk , Microbiota/genetics , Lactation , Fermentation
2.
Front Microbiol ; 15: 1271599, 2024.
Article in English | MEDLINE | ID: mdl-38444805

ABSTRACT

Anaerobic in vitro fermentation is widely used to simulate rumen kinetics and study the microbiome and metabolite profiling in a controlled lab environment. However, a better understanding of the interplay between the temporal dynamics of fermentation kinetics, metabolic profiles, and microbial composition in in vitro rumen fermentation batch systems is required. To fill that knowledge gap, we conducted three in vitro rumen fermentations with maize silage as the substrate, monitoring total gas production (TGP), dry matter degradability (dDM), and methane (CH4) concentration at 6, 12, 24, 36, and 48 h in each fermentation. At each time point, we collected rumen fluid samples for microbiome analysis and volatile fatty acid (VFA) analysis. Amplicon sequencing of 16S rRNA genes (V4 region) was used to profile the prokaryotic community structure in the rumen during the fermentation process. As the fermentation time increased, dDM, TGP, VFA concentrations, CH4 concentration, and yield (mL CH4 per g DM at standard temperature and pressure (STP)) significantly increased. For the dependent variables, CH4 concentration and yield, as well as the independent variables TGP and dDM, polynomial equations were fitted. These equations explained over 85% of the data variability (R2 > 0.85) and suggest that TGP and dDM can be used as predictors to estimate CH4 production in rumen fermentation systems. Microbiome analysis revealed a dominance of Bacteroidota, Cyanobacteria, Desulfobacterota, Euryarchaeota, Fibrobacterota, Firmicutes, Patescibacteria, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Significant temporal variations in Bacteroidota, Campylobacterota, Firmicutes, Proteobacteria, and Spirochaetota were detected. Estimates of alpha diversity based on species richness and the Shannon index showed no variation between fermentation time points. This study demonstrated that the in vitro fermentation characteristics of a given feed type (e.g., maize silage) can be predicted from a few parameters (CH4 concentration and yield, tVFA, acetic acid, and propionic acid) without running the actual in vitro trial if the rumen fluid is collected from similar donor cows. Although the dynamics of the rumen prokaryotes changed remarkably over time and in accordance with the fermentation kinetics, more time points between 0 and 24 h are required to provide more details about the microbial temporal dynamics at the onset of the fermentation.

3.
Transl Anim Sci ; 7(1): txad074, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37483683

ABSTRACT

The objective of this study was to compare the effect of supplementing dairy cow diets with contrasting sources of omega-6 (soybean oil) and omega-3 (fish oil) PUFA on rumen microbiome. For 63 d, 15 mid-lactating cows were fed a control diet (n = 5 cows; no fat supplement) or control diet supplemented with 2.9% dry matter (DM) of either soybean oil (SO; n = 5 cows) or fish oil (FO; n = 5 cows). Ruminal contents were collected on days 0, 21, 42, and 63 for 16S rRNA gene sequencing. Beta diversity and Shannon, Simpson and Chao1 diversity indices were not affected by dietary treatments. In terms of core microbiome, Succiniclasticum, Prevotella, Rikenellaceae_RC9_gut_group, and NK4A214_group were the most prevalent taxa regardless of treatments. Bifidobacterium was absent in SO diet, Acetitomaculum was absent in FO, and Sharpea was only detected in SO. Overall, results showed that at 2.9% DM supplementation of either SO or FO over 63 days in dairy cow diets does not cause major impact on bacterial community composition and thus is recommended as feeding practice.

4.
Appl Microbiol Biotechnol ; 107(15): 4931-4945, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37341753

ABSTRACT

Microbiota from mothers is an essential source of microbes in early-life rumen microbiota, but the contribution of microbiota from different maternal sites to the rumen microbiota establishment in neonates needs more data. To fill this gap, we collected samples from the mouth, teat skin, and rumen of lactating yaks and from the rumen of sucking calves concomitantly on seven occasions between days 7 and 180 after birth under grazing conditions. We observed that the eukaryotic communities clustered based on sample sites, except for the protozoal community in the teat skin, with negative correlations between fungal and protozoal diversities in the rumen of calves. Furthermore, fungi in the dam's mouth, which is the greatest source of the calf's rumen fungi, accounted for only 0.1%, and the contribution of the dam's rumen to the calf's rumen fungi decreased with age and even disappeared after day 60. In contrast, the average contribution of the dam's rumen protozoa to the calf's rumen protozoa was 3.7%, and the contributions from the dam's teat skin (from 0.7 to 2.7%) and mouth (from 0.4 to 3.3%) increased with age. Thus, the divergence in dam-to-calf transmissibility between fungi and protozoa indicates that the foundation of these eukaryotic communities is shaped by different rules. This study provides the first measurements of the maternal contribution to the fungal and protozoal establishment in the rumen of sucking and grazing yak calves in early life, which could be beneficial for future microbiota manipulation in neonatal ruminants. KEY POINTS: • Dam to calf transfer of rumen eukaryotes occurs from multiple body sites. • A minor proportion of rumen fungi in calves originated from maternal sites. • The inter-generation transmission between rumen fungi and protozoa differs.


Subject(s)
Eukaryotic Cells , Lactation , Female , Cattle , Animals , Mouth , Rumen/microbiology , Fungi
5.
Front Microbiol ; 13: 1025173, 2022.
Article in English | MEDLINE | ID: mdl-36523842

ABSTRACT

Ruminants digest plant biomass more efficiently than monogastric animals due to their symbiotic relationship with a complex microbiota residing in the rumen environment. What remains unclear is the relationship between the rumen microbial taxonomic and functional composition and feed efficiency (FE), especially in crossbred dairy cattle (Holstein x Gyr) raised under tropical conditions. In this study, we selected twenty-two F1 Holstein x Gyr heifers and grouped them according to their residual feed intake (RFI) ranking, high efficiency (HE) (n = 11) and low efficiency (LE) (n = 11), to investigate the effect of FE on the rumen microbial taxa and their functions. Rumen fluids were collected using a stomach tube apparatus and analyzed using amplicon sequencing targeting the 16S (bacteria and archaea) and 18S (protozoa) rRNA genes. Alpha-diversity and beta-diversity analysis revealed no significant difference in the rumen microbiota between the HE and LE animals. Multivariate analysis (sPLS-DA) showed a clear separation of two clusters in bacterial taxonomic profiles related to each FE group, but in archaeal and protozoal profiles, the clusters overlapped. The sPLS-DA also revealed a clear separation in functional profiles for bacteria, archaea, and protozoa between the HE and LE animals. Microbial taxa were differently related to HE (e.g., Howardella and Shuttleworthia) and LE animals (e.g., Eremoplastron and Methanobrevibacter), and predicted functions were significatively different for each FE group (e.g., K03395-signaling and cellular process was strongly related to HE animals, and K13643-genetic information processing was related to LE animals). This study demonstrates that differences in the rumen microbiome relative to FE ranking are not directly observed from diversity indices (Faith's Phylogenetic Diversity, Pielou's Evenness, Shannon's diversity, weighted UniFrac distance, Jaccard index, and Bray-Curtis dissimilarity), but from targeted identification of specific taxa and microbial functions characterizing each FE group. These results shed light on the role of rumen microbial taxonomic and functional profiles in crossbred Holstein × Gyr dairy cattle raised in tropical conditions, creating the possibility of using the microbial signature of the HE group as a biological tool for the development of biomarkers that improve FE in ruminants.

6.
Animals (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36077886

ABSTRACT

This technical report used a wireless device (CURO MkII) that recorded high-quality rumen sound waves from cows of different production statuses (dry cow vs. lactating cow) and physiological stages (pregnant vs. non-pregnant). Recordings from a dry Jersey heifer fed a diet based on haylage and straw showed a few high-amplitude spikes (3 at 6 dB) but mostly infrequent signals (9 at 12 dB and 22 at 18 dB), with pauses of approx. 2 min with no rumen sounds in between. Analysis of a few individual spikes in the 12 dB range showed that wave frequencies ranged from 230 to 250 Hz and lasted 4 s. Recordings of the high-yielding Red Danish cow fed a total mixed ration (TMR) showed an almost constant frequency of the rumen sounds with considerable amplitude of the waves. Rumen sounds from the Red Danish dry and pregnant cow fed on TMR were less frequent, with a lower amplitude than those from the high-yielding cow. These preliminary results demonstrate that wireless sound recording units are capable of measuring rumen sounds in a production setting and can discern between animals of different production and physiological stages, but more studies are needed to confirm our findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...