Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biomark Res ; 9(1): 10, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541423

ABSTRACT

Experimental evidence points to the role of Zinc fingers and homeoboxes protein 1 and 2 (ZHX1 and ZHX2) in the development and progression of several types of cancer, including hematological malignancies. Here, we determined whether the altered expression of ZHX1 and ZHX2 has clinical implications in patients with CLL. Interestingly, CLL patients with low expression ZHX1 and ZHX2 presented higher WBC counts. Importantly, our data showed that CLL patients with cytogenetic alterations presented reduced transcriptional levels of ZHX1 and ZHX2 in comparison with patients with normal karyotype. Moreover, when stratifying CLL patients according to the karyotype prognosis value, we observed that the expression of ZHX1 and ZHX2 was significantly reduced in CLL patients presenting adverse karyotypes. Finally, we stratified patients according to the number of chromosomal aberrations and observed a negative association between ZHX1 and ZHX2 expression and the accumulation of chromosomal abnormalities in CLL patients. Our data showed that the low expression of ZHX1 and ZHX2 is associated with a worse prognosis in CLL, followed by a greater number of leukemic cells and unfavorable cytogenetics findings in the diagnosis. Further studies will be important to confirm the prognostic value of ZHX1 and ZHX2 in independent CLL cohorts.

2.
Toxicol In Vitro ; 69: 104992, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32889036

ABSTRACT

Euchromatic histone-lysine N-methyltransferase 1 (EHMT1) and EHMT2 are upregulated in various human cancers, and their deregulation is associated with tumor development and progression. In this paper, we investigated the expression level of EHMT1/EHMT2 in acute lymphoblastic leukemia (ALL) and whether the modulation of these enzymes could have any cellular or molecular impact on ALL cells. For this, we used UNC0646 as a priming strategy to target EHMT1/EHMT2 and investigated its effect on proliferation and cell viability of Jurkat cells by MTT assay. Then, considering the IC50 and IC75, cellular death was determined by Annexin V/PI staining using flow cytometry. Finally, we investigated by RT-PCR the molecular bases that could be involved in the observed effects. Interestingly, accessing the International Microarray Innovations in Leukemia (MILE) study group, we detected that both EHMT1 and EHMT2 are overexpressed in ALL. More important, we determined that inhibition of EHMT1/EHMT2 significantly decreased Jurkat cell viability in a dose-dependent manner. Accordingly, we observed that inhibition of EHMT1/EHMT2 promoted Jurkat cell death, which was accompanied by increased expression of P53, TP73, BAX, and MDM4. These results clearly indicate that inhibition of EHMT1/EHMT2 induces pro-apoptotic gene expression in ALL and promotes cell death. More importantly, the modulation of these histone methyltransferases may be a promising epigenetic target for ALL treatment.


Subject(s)
Gene Expression Regulation, Leukemic , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Protein p73/genetics , Tumor Suppressor Protein p53/genetics , Cell Death , Cell Proliferation , Cell Survival , Computer Simulation , Epigenesis, Genetic , Humans , Jurkat Cells
3.
Int Immunopharmacol ; 79: 106172, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31926480

ABSTRACT

PURPOSE: Mesenchymal Stem Cells (MSCs) can interact with and modulate the functions of all immune cells, suppressing both the innate and adaptive immune responses. Currently, most of the in vitro studies which have led to the description of MSC properties have resulted from MSC culture in the presence of fetal bovine serum (FBS), in spite of the recognition of FBS limitations and attempts to substitute this component from the MSC media. METHODS: Herein, we compare FBS and Platelet Poor Plasma (PPP) as MSC media supplements, according to Adipose-derived MSC (AMSC) phenotype, proliferation and immunoregulatory mechanisms. RESULTS: Interestingly, despite maintaining the classic phenotypic profile of MSCs, PPP cultured AMSCs showed impaired proliferative potential. Furthermore, our results clearly show that AMSC culture with PPP leads to decreased expression of soluble immunosuppressive factors, which resulted in decreased capacity of inducing regulatory T-cells (Tregs) generation by these cells. In contrast, PPP supplementation promoted enhanced VCAM-1 and ICAM-1 expression on AMSC surface. Therefore, AMSCs cultured with PPP showed limited potential to produce soluble immunomodulatory factors, indicating a reduced capacity to control the immune system thought paracrine activity. CONCLUSION: Overall, our data sheds light on the importance of culture media supplementation for MSC immunomodulatory behavior, as well as serving as an alert regarding the complexity of replacing FBS in MSC culture.


Subject(s)
Culture Media/metabolism , Mesenchymal Stem Cells/metabolism , Plasma/metabolism , Animals , Blood Platelets/cytology , Cattle , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/pathology
4.
Med Oncol ; 36(1): 3, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30426231

ABSTRACT

The acquisition of complex karyotypes is related to the progression of chronic lymphocytic leukemia (CLL) and patients with this condition have a poor prognosis. Despite recent advances in the classification of prognosis in CLL patients, understanding of the molecular mechanisms that lead to genomic instability and progression of this disease remains inadequate. Interestingly, dysregulated expression of KDM4 members is involved in the progression of several cancer types and plays a role in the DNA damage response; however, the gene expression profile and the importance of KDM4 members in CLL are still unknown. Here, we assessed the gene expression profile of KDM4A, KDM4B, and KDM4C in 59 CLL samples and investigated whether these histone demethylases have any influence on the prognostic markers of this leukemia. KDM4A gene expression was higher in CLL patients as compared with control samples. In contrast, CLL samples showed decreased levels of the KDM4B transcript in relation to control cases, and no difference was detected in KDM4C expression. Furthermore, patients with positive expression of ZAP-70 had lower expression of KDM4B and KDM4C as compared with ZAP-70-negative patients. More importantly, patients with low expression of these histone demethylases had higher leukemic cell numbers and displayed adverse cytogenetic findings and the acquisition of a complex karyotype. The present data clearly show that the expression of KDM4 members is dysregulated in CLL and impact the prognosis of this leukemia. These findings are useful for a better understanding of the impact of epigenetics on CLL progression.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/biosynthesis , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Adult , Aged , Aged, 80 and over , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Transcriptome , ZAP-70 Protein-Tyrosine Kinase/biosynthesis
5.
Biomed Pharmacother ; 108: 1584-1590, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30372860

ABSTRACT

LL-37 is a host-defense peptide (HDP) and exerts a broad spectrum of microbicidal activity against bacteria, fungi, and viral pathogens. This peptide also interacts with human cells and influences their behavior, promoting angiogenesis, wound healing, immunomodulation, and affecting apoptosis. Lately, significant advances have been achieved regarding the elucidation of underlying mechanisms related to LL-37 effects over neutrophil and monocytes. However, how T-cells respond to LL-37 stimulation is still largely unknown. Here, we used flow cytometry to evaluate the effects of LL-37 over peripheral blood mononuclear cells (PBMCs) viability, T-cell proliferation, T-cell activation, as well as the generation of regulatory T-cells (Tregs). Those aspects were assessed both in immune homeostatic and inflammatory milieu. Furthermore, we investigated the transcript levels of the inflammatory factors INF-γ, TNF-ɑ, and TGF-ß in these conditions. Interestingly, our data revealed that the treatment of PBMCs with LL-37 enhanced the viability of these cells and exerted wide effects over T cell response. Upon activation, LL-37 treated T-cells presented lower proliferation and also increased generation of Tregs. Finally, while non-stimulated cells increased the expression of inflammatory factors when treated with LL-37, activated cells treated with LL-37 presented a decreased production of the same inflammatory mediators. These results are important for the immunotherapy field, and indicate that the use of LL-37 must be carefully evaluated in both homeostatic and inflammatory scenarios, since the microenvironment clearly plays a crucial role in determining how T-cells respond to LL-37.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Immunity, Cellular/immunology , Leukocytes, Mononuclear/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Cells, Cultured , Flow Cytometry/methods , Humans , Immunity, Cellular/drug effects , Leukocytes, Mononuclear/drug effects , T-Lymphocytes, Regulatory/drug effects , Cathelicidins
6.
Invest New Drugs ; 36(5): 955-960, 2018 10.
Article in English | MEDLINE | ID: mdl-29855824

ABSTRACT

Background Heterodimeric methyltransferases GLP (EHMT1/KMT1D) and G9a (EHMT2/KMT1C) are two closely related enzymes that promote the monomethylation and dimethylation of histone H3 lysine 9. Dysregulation of their activity has been implicated in several types of human cancer. Patients and methods Here, in order to investigate whether GLP/G9a exerts any impact on Chronic Lymphocytic Leukemia (CLL), GLP/G9a expression levels were assessed in a cohort of 50 patients and the effects of their inhibition were verified for the viability of CLL cells. Also, qRT-PCR was used to investigate the transcriptional levels of GLP/G9a in CLL patients. In addition, patient samples were classified according to ZAP-70 protein expression by flow cytometry and according to karyotype integrity by cytogenetics analysis. Finally, a selective small molecule inhibitor for GLP/G9a was used to ascertain whether these methyltransferases influenced the viability of MEC-1 CLL cell lineage. Results mRNA analysis revealed that CLL samples had higher levels of GLP, but not G9a, when compared to non-leukemic controls. Interestingly, patients with unfavorable cytogenetics showed higher expression levels of GLP compared to patients with favorable karyotypes. More importantly, GLP/G9a inhibition markedly induced cell death in CLL cells. Conclusion Taken together, these results indicate that GLP is associated with a worse prognosis in CLL, and that the inhibition of GLP/G9a influences CLL cell viability. Altogether, the present data demonstrate that these methyltransferases can be potential markers for disease progression, as well as a promising epigenetic target for CLL treatment and the prevention of disease evolution.


Subject(s)
Gene Expression Regulation, Leukemic , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Adult , Aged , Aged, 80 and over , Cell Death/drug effects , Cell Line, Tumor , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Middle Aged , Prognosis , ZAP-70 Protein-Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...