Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825644

ABSTRACT

Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.

2.
Nature ; 585(7825): 397-403, 2020 09.
Article in English | MEDLINE | ID: mdl-32610343

ABSTRACT

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Subject(s)
Disease Models, Animal , Myelin Proteolipid Protein/deficiency , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/therapy , Animals , CRISPR-Cas Systems , Female , Gene Editing , Hypoxia/metabolism , Male , Mice , Mice, Mutant Strains , Motor Activity/genetics , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Pelizaeus-Merzbacher Disease/metabolism , Point Mutation , Respiratory Function Tests , Survival Analysis
3.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32246942

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Subject(s)
Cell Communication/genetics , Disease/genetics , Oligodendroglia/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/physiopathology , Myelin Sheath/metabolism , Neurons/metabolism , Oligodendroglia/physiology , Risk Factors
4.
Stem Cell Reports ; 11(3): 711-726, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30146490

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a fatal X-linked disorder caused by loss of myelinating oligodendrocytes and consequent hypomyelination. The underlying cellular and molecular dysfunctions are not fully defined, but therapeutic enhancement of oligodendrocyte survival could restore functional myelination in patients. Here we generated pure, scalable quantities of induced pluripotent stem cell-derived oligodendrocyte progenitor cells (OPCs) from a severe mouse model of PMD, Plp1jimpy. Temporal phenotypic and transcriptomic studies defined an early pathological window characterized by endoplasmic reticulum (ER) stress and cell death as OPCs exit their progenitor state. High-throughput phenotypic screening identified a compound, Ro 25-6981, which modulates the ER stress response and rescues mutant oligodendrocyte survival in jimpy, in vitro and in vivo, and in human PMD oligocortical spheroids. Surprisingly, increasing oligodendrocyte survival did not restore subsequent myelination, revealing a second pathological phase. Collectively, our work shows that PMD oligodendrocyte loss can be rescued pharmacologically and defines a need for multifactorial intervention to restore myelination.


Subject(s)
Oligodendrocyte Precursor Cells/pathology , Pelizaeus-Merzbacher Disease/pathology , Animals , Cell Survival , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mice , Mutation , Myelin Sheath/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/metabolism , Transcriptome
5.
Nat Methods ; 15(9): 700-706, 2018 09.
Article in English | MEDLINE | ID: mdl-30046099

ABSTRACT

Cerebral organoids provide an accessible system for investigations of cellular composition, interactions, and organization but have lacked oligodendrocytes, the myelinating glia of the central nervous system. Here we reproducibly generated oligodendrocytes and myelin in 'oligocortical spheroids' derived from human pluripotent stem cells. Molecular features consistent with those of maturing oligodendrocytes and early myelin appeared by week 20 in culture, with further maturation and myelin compaction evident by week 30. Promyelinating drugs enhanced the rate and extent of oligodendrocyte generation and myelination, and spheroids generated from human subjects with a genetic myelin disorder recapitulated human disease phenotypes. Oligocortical spheroids provide a versatile platform for studies of myelination of the developing central nervous system and offer new opportunities for disease modeling and therapeutic development.


Subject(s)
Cerebral Cortex/cytology , Myelin Sheath/metabolism , Oligodendroglia/cytology , Spheroids, Cellular/cytology , Animals , Cell Differentiation , Humans , Oligodendroglia/metabolism , Pluripotent Stem Cells/cytology , Spheroids, Cellular/metabolism
6.
Nature ; 560(7718): 372-376, 2018 08.
Article in English | MEDLINE | ID: mdl-30046109

ABSTRACT

Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases1-3. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo4-10. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.


Subject(s)
Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Remyelination , Sterols/chemistry , Sterols/metabolism , 14-alpha Demethylase Inhibitors/pharmacology , Animals , Cholesterol/biosynthesis , HEK293 Cells , High-Throughput Screening Assays , Humans , Imidazoles/pharmacology , Male , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Oligodendroglia/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Remyelination/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Steroid Isomerases/antagonists & inhibitors , Sterol 14-Demethylase/metabolism , Substrate Specificity
7.
Am J Hum Genet ; 100(4): 617-634, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366443

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.


Subject(s)
Oligodendroglia/pathology , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/pathology , Cell Culture Techniques , Child , Child, Preschool , Endoplasmic Reticulum Stress , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Myelin Proteolipid Protein , Oligodendroglia/metabolism
8.
Nature ; 522(7555): 216-20, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25896324

ABSTRACT

Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.


Subject(s)
Clobetasol/pharmacology , Miconazole/pharmacology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Pluripotent Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cerebellum/drug effects , Cerebellum/metabolism , Cerebellum/pathology , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Germ Layers/drug effects , Germ Layers/metabolism , Germ Layers/pathology , Humans , Lysophosphatidylcholines , MAP Kinase Signaling System , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , Multiple Sclerosis/pathology , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Phenotype , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Receptors, Glucocorticoid/metabolism , Regeneration/drug effects , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...