Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cardiovasc Eng Technol ; 12(6): 589-597, 2021 12.
Article in English | MEDLINE | ID: mdl-34244904

ABSTRACT

PURPOSE: Right ventricular (RV) function is increasingly recognized for its prognostic value in many disease states. As with the left ventricle (LV), strain-based measurements may have better prognostic value than typical chamber volumes or ejection fraction. Complete functional characterization of the RV requires high-resolution, 3D displacement tracking methods, which have been prohibitively challenging to implement. Zonal excitation during Displacement ENcoding with Stimulated Echoes (DENSE) magnetic resonance imaging (MRI) has helped reduce scan time for 2D LV strain quantification. We hypothesized that zonal excitation could alternatively be used to reproducibly acquire higher resolution, 3D-encoded DENSE images for quantification of bi-ventricular strain within a single breath-hold. METHODS: We modified sequence parameters for a 3D zonal excitation DENSE sequence to achieve in-plane resolution < 2 mm and acquired two sets of images in eight healthy adult male volunteers with median (IQR) age 32.5 (32.0-33.8) years. We assessed the inter-test reproducibility of this technique, and compared computed strains and torsion with previously published data. RESULTS: Data for one subject was excluded based on image artifacts. Reproducibility for LV (CoV: 6.1-9.0%) and RV normal strains (CoV: 6.3-8.2%) and LV torsion (CoV = 7.1%) were all very good. Reproducibility of RV torsion was lower (CoV = 16.7%), but still within acceptable limits. Computed global strains and torsion were within reasonable agreement with published data, but further studies in larger cohorts are needed to confirm. CONCLUSION: Reproducible acquisition of 3D-encoded biventricular myocardial strain data in a breath-hold is feasible using DENSE with zonal excitation.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Adult , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Predictive Value of Tests , Reproducibility of Results , Ventricular Function, Left
2.
Circ Genom Precis Med ; 14(2): e003302, 2021 04.
Article in English | MEDLINE | ID: mdl-33684294

ABSTRACT

BACKGROUND: Genomic screening holds great promise for presymptomatic identification of hidden disease, and prevention of dramatic events, including sudden cardiac death associated with arrhythmogenic cardiomyopathy (ACM). Herein, we present findings from clinical follow-up of carriers of ACM-associated pathogenic/likely pathogenic desmosome variants ascertained through genomic screening. METHODS: Of 64 548 eligible participants in Geisinger MyCode Genomic Screening and Counseling program (2015-present), 92 individuals (0.14%) identified with pathogenic/likely pathogenic desmosome variants by clinical laboratory testing were referred for evaluation. We reviewed preresult medical history, patient-reported family history, and diagnostic testing results to assess both arrhythmogenic right ventricular cardiomyopathy and left-dominant ACM. RESULTS: One carrier had a prior diagnosis of dilated cardiomyopathy with arrhythmia; no other related diagnoses or diagnostic family history criteria were reported. Fifty-nine carriers (64%) had diagnostic testing in follow-up. Excluding the variant, 21/59 carriers satisfied at least one arrhythmogenic right ventricular cardiomyopathy task force criterion, 11 (52%) of whom harbored DSP variants, but only 5 exhibited multiple criteria. Six (10%) carriers demonstrated evidence of left-dominant ACM, including high rates of atypical late gadolinium enhancement by magnetic resonance imaging and nonsustained ventricular tachycardia. Two individuals received new cardiomyopathy diagnoses and received defibrillators for primary prevention. CONCLUSIONS: Genomic screening for pathogenic/likely pathogenic variants in desmosome genes can uncover both left- and right-dominant ACM. Findings of overt cardiomyopathy were limited but were most common in DSP-variant carriers and notably absent in PKP2-variant carriers. Consideration of the pathogenic/likely pathogenic variant as a major criterion for diagnosis is inappropriate in the setting of genomic screening.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Desmosomes/genetics , Genetic Variation , Adult , Aged , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Desmocollins/genetics , Desmoglein 2/genetics , Echocardiography , Female , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Plakophilins/genetics
3.
Nat Biomed Eng ; 5(6): 546-554, 2021 06.
Article in English | MEDLINE | ID: mdl-33558735

ABSTRACT

Machine learning promises to assist physicians with predictions of mortality and of other future clinical events by learning complex patterns from historical data, such as longitudinal electronic health records. Here we show that a convolutional neural network trained on raw pixel data in 812,278 echocardiographic videos from 34,362 individuals provides superior predictions of one-year all-cause mortality. The model's predictions outperformed the widely used pooled cohort equations, the Seattle Heart Failure score (measured in an independent dataset of 2,404 patients with heart failure who underwent 3,384 echocardiograms), and a machine learning model involving 58 human-derived variables from echocardiograms and 100 clinical variables derived from electronic health records. We also show that cardiologists assisted by the model substantially improved the sensitivity of their predictions of one-year all-cause mortality by 13% while maintaining prediction specificity. Large unstructured datasets may enable deep learning to improve a wide range of clinical prediction models.


Subject(s)
Deep Learning , Echocardiography/statistics & numerical data , Heart Failure/diagnostic imaging , Heart Failure/mortality , Image Interpretation, Computer-Assisted/statistics & numerical data , Aged , Databases, Factual , Echocardiography/methods , Electronic Health Records/statistics & numerical data , Female , Heart Failure/pathology , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , Survival Analysis
4.
J Cardiovasc Magn Reson ; 19(1): 86, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29117866

ABSTRACT

BACKGROUND: Children with obesity have hypertrophic cardiac remodeling. Hypertension is common in pediatric obesity, and may independently contribute to hypertrophy. We hypothesized that both the degree of obesity and ambulatory blood pressure (ABP) would independently associate with measures of hypertrophic cardiac remodeling in children. METHODS: Children, aged 8-17 years, prospectively underwent cardiovascular magnetic resonance (CMR) and ABP monitoring. Left ventricular (LV) mass indexed to height2.7 (LVMI), myocardial thickness and end-diastolic volume were quantified from a 3D LV model reconstructed from cine balanced steady state free precession images. Categories of remodeling were determined based on cutoff values for LVMI and mass/volume. Principal component analysis was used to define a "hypertrophy score" to study the continuous relationship between concentric hypertrophy and ABP. RESULTS: Seventy-two children were recruited, and 68 of those (37 healthy weight and 31 obese/overweight) completed both CMR and ABP monitoring. Obese/overweight children had increased LVMI (27 ± 4 vs 22 ± 3 g/m2.7, p < 0.001), myocardial thickness (5.6 ± 0.9 vs 4.9 ± 0.7 mm, p < 0.001), mass/volume (0.69 ± 0.1 vs 0.61 ± 0.06, p < 0.001), and hypertrophy score (1.1 ± 2.2 vs -0.96 ± 1.1, p < 0.001). Thirty-five percent of obese/overweight children had concentric hypertrophy. Ambulatory hypertension was observed in 26% of the obese/overweight children and none of the controls while masked hypertension was observed in 32% of the obese/overweight children and 16% of the controls. Univariate linear regression showed that BMI z-score, systolic BP (24 h, day and night), and systolic load correlated with LVMI, thickness, mass/volume and hypertrophy score, while 24 h and nighttime diastolic BP and load also correlated with thickness and mass/volume. Multivariate analysis showed body mass index z-score and systolic blood pressure were both independently associated with left ventricular mass index (ß=0.54 [p < 0.001] and 0.22 [p = 0.03]), thickness (ß=0.34 [p < 0.001] and 0.26 [p = 0.001]) and hypertrophy score (ß=0.47 and 0.36, both p < 0.001). CONCLUSIONS: In children, both the degree of obesity and ambulatory blood pressures are independently associated with measures of cardiac hypertrophic remodeling, however the correlations were generally stronger for the degree of obesity. This suggests that interventions targeted at weight loss or obesity-associated co-morbidities including hypertension may be effective in reversing or preventing cardiac remodeling in obese children.


Subject(s)
Blood Pressure , Hypertension/etiology , Hypertrophy, Left Ventricular/etiology , Pediatric Obesity/complications , Ventricular Function, Left , Ventricular Remodeling , Adolescent , Age Factors , Blood Pressure Monitoring, Ambulatory , Body Mass Index , Chi-Square Distribution , Child , Cross-Sectional Studies , Female , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Linear Models , Magnetic Resonance Imaging, Cine , Male , Multivariate Analysis , Pediatric Obesity/diagnosis , Pediatric Obesity/physiopathology , Principal Component Analysis , Prospective Studies , Risk Factors , Severity of Illness Index
5.
J Cardiovasc Magn Reson ; 19(1): 49, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28659144

ABSTRACT

BACKGROUND: Pediatric obesity is a growing public health problem, which is associated with increased risk of cardiovascular disease and premature death. Left ventricular (LV) remodeling (increased myocardial mass and thickness) and contractile dysfunction (impaired longitudinal strain) have been documented in obese children, but little attention has been paid to the right ventricle (RV). We hypothesized that obese/overweight children would have evidence of RV remodeling and contractile dysfunction. METHODS: One hundred and three children, ages 8-18 years, were prospectively recruited and underwent cardiovascular magnetic resonance (CMR), including both standard cine imaging and displacement encoding with stimulated echoes (DENSE) imaging, which allowed for quantification of RV geometry and function/mechanics. RV free wall longitudinal strain was quantified from the end-systolic four-chamber DENSE image. Linear regression was used to quantify correlations of RV strain with LV strain and measurements of body composition (adjusted for sex and height). Analysis of variance was used to study the relationship between RV strain and LV remodeling types (concentric remodeling, eccentric/concentric hypertrophy). RESULTS: The RV was sufficiently visualized with DENSE in 70 (68%) subjects, comprising 36 healthy weight (13.6 ± 2.7 years) and 34 (12.1 ± 2.9 years) obese/overweight children. Obese/overweight children had a 22% larger RV mass index (8.2 ± 0.9 vs 6.7 ± 1.1 g/m2.7, p < 0.001) compared to healthy controls. RV free wall longitudinal strain was impaired in obese/overweight children (-16 ± 4% vs -19 ± 5%, p = 0.02). Ten (14%) out of 70 children had LV concentric hypertrophy, and these children had the most impaired RV longitudinal strain compared to those with normal LV geometry (-13 ± 4% vs -19 ± 5%, p = 0.002). RV longitudinal strain was correlated with LV longitudinal strain (r = 0.34, p = 0.004), systolic blood pressure (r = 0.33, p = 0.006), as well as BMI z-score (r = 0.28, p = 0.02), waist (r = 0.31, p = 0.01), hip (r = 0.40, p = 0.004) and abdominal (r = 0.38, p = 0.002) circumference, height and sex adjusted. CONCLUSIONS: Obese/overweight children have evidence of RV remodeling (increased RV mass) and RV contractile dysfunction (impaired free wall longitudinal strain). Moreover, RV longitudinal strain correlates with LV longitudinal strain, and children with LV concentric hypertrophy show the most impaired RV function. These results suggest there may be a common mechanism underlying both remodeling and dysfunction of the left and right ventricles in obese/overweight children.


Subject(s)
Hypertrophy, Left Ventricular/diagnostic imaging , Magnetic Resonance Imaging, Cine , Myocardial Contraction , Pediatric Obesity/complications , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Left , Ventricular Function, Right , Ventricular Remodeling , Adolescent , Child , Female , Humans , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/physiopathology , Image Interpretation, Computer-Assisted , Kentucky , Linear Models , Male , Observer Variation , Pediatric Obesity/diagnosis , Pediatric Obesity/physiopathology , Pennsylvania , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/physiopathology
6.
Genet Med ; 19(11): 1245-1252, 2017 11.
Article in English | MEDLINE | ID: mdl-28471438

ABSTRACT

PurposeArrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease. Clinical follow-up of incidental findings in ARVC-associated genes is recommended. We aimed to determine the prevalence of disease thus ascertained.MethodsIndividuals (n = 30,716) underwent exome sequencing. Variants in PKP2, DSG2, DSC2, DSP, JUP, TMEM43, or TGFß3 that were database-listed as pathogenic or likely pathogenic were identified and evidence-reviewed. For subjects with putative loss-of-function (pLOF) variants or variants of uncertain significance (VUS), electronic health records (EHR) were reviewed for ARVC diagnosis, diagnostic criteria, and International Classification of Diseases (ICD-9) codes.ResultsEighteen subjects had pLOF variants; none of these had an EHR diagnosis of ARVC. Of 14 patients with an electrocardiogram, one had a minor diagnostic criterion; the rest were normal. A total of 184 subjects had VUS, none of whom had an ARVC diagnosis. The proportion of subjects with VUS with major (4%) or minor (13%) electrocardiogram diagnostic criteria did not differ from that of variant-negative controls. ICD-9 codes showed no difference in defibrillator use, electrophysiologic abnormalities or nonischemic cardiomyopathies in patients with pLOF or VUSs compared with controls.ConclusionpLOF variants in an unselected cohort were not associated with ARVC phenotypes based on EHR review. The negative predictive value of EHR review remains uncertain.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/genetics , Exome , Genetic Variation , Sequence Analysis, DNA , Adult , Arrhythmogenic Right Ventricular Dysplasia/epidemiology , Cohort Studies , Electronic Health Records , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Phenotype , Prevalence
7.
Int J Mol Sci ; 16(5): 11259-75, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25993294

ABSTRACT

Abdominal aortic aneurysm (AAA) is a complex disorder that has a significant impact on the aging population. While both genetic and environmental risk factors have been implicated in AAA formation, the precise genetic markers involved and the factors influencing their expression remain an area of ongoing investigation. DNA methylation has been previously used to study gene silencing in other inflammatory disorders and since AAA has an extensive inflammatory component, we sought to examine the genome-wide DNA methylation profiles in mononuclear blood cells of AAA cases and matched non-AAA controls. To this end, we collected blood samples and isolated mononuclear cells for DNA and RNA extraction from four all male groups: AAA smokers (n = 11), AAA non-smokers (n = 9), control smokers (n = 10) and control non-smokers (n = 11). Methylation data were obtained using the Illumina 450k Human Methylation Bead Chip and analyzed using the R language and multiple Bioconductor packages. Principal component analysis and linear analysis of CpG island subsets identified four regions with significant differences in methylation with respect to AAA: kelch-like family member 35 (KLHL35), calponin 2 (CNN2), serpin peptidase inhibitor clade B (ovalbumin) member 9 (SERPINB9), and adenylate cyclase 10 pseudogene 1 (ADCY10P1). Follow-up studies included RT-PCR and immunostaining for CNN2 and SERPINB9. These findings are novel and suggest DNA methylation may play a role in AAA pathobiology.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , DNA Methylation , Aged , Aged, 80 and over , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Abdominal/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , CpG Islands , DNA/isolation & purification , DNA/metabolism , Humans , Immunohistochemistry , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Middle Aged , Oligonucleotide Array Sequence Analysis , Pseudogenes/genetics , Real-Time Polymerase Chain Reaction , Serpins/genetics , Serpins/metabolism , Smoking , Calponins
SELECTION OF CITATIONS
SEARCH DETAIL
...