Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
2.
Toxins (Basel) ; 16(2)2024 02 12.
Article in English | MEDLINE | ID: mdl-38393180

ABSTRACT

Ricin, a highly potent plant-derived toxin, is considered a potential bioterrorism weapon due to its pronounced toxicity, high availability, and ease of preparation. Acute damage following pulmonary ricinosis is characterized by local cytokine storm, massive neutrophil infiltration, and edema formation, resulting in respiratory insufficiency and death. A designated equine polyclonal antibody-based (antitoxin) treatment was developed in our laboratory and proved efficacious in alleviating lung injury and increasing survival rates. Although short-term pathogenesis was thoroughly characterized in antitoxin-treated mice, the long-term damage in surviving mice was never determined. In this study, long-term consequences of ricin intoxication were evaluated 30 days post-exposure in mice that survived antitoxin treatment. Significant pulmonary sequelae were demonstrated in surviving antitoxin-treated mice, as reflected by prominent histopathological changes, moderate fibrosis, increased lung hyperpermeability, and decreased lung compliance. The presented data highlight, for the first time to our knowledge, the possibility of long-term damage development in mice that survived lethal-dose pulmonary exposure to ricin due to antitoxin treatment.


Subject(s)
Antitoxins , Lung Injury , Respiratory Insufficiency , Ricin , Animals , Horses , Mice , Antitoxins/therapeutic use , Ricin/toxicity , Lung/pathology , Lung Injury/drug therapy
3.
Nat Plants ; 10(3): 512-524, 2024 03.
Article in English | MEDLINE | ID: mdl-38396112

ABSTRACT

The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII-LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as 'stacked thylakoid doublets', is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plant's ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.


Subject(s)
Arabidopsis , Thylakoids , Thylakoids/metabolism , Electron Transport , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Electrons , Light-Harvesting Protein Complexes/metabolism , Arabidopsis/metabolism , Light , Photosynthesis
4.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506203

ABSTRACT

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Subject(s)
Axons , Nerve Regeneration , Neurons , Peripheral Nerve Injuries , Adult , Humans , Axons/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Interneurons/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism
5.
Nat Commun ; 14(1): 2890, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210560

ABSTRACT

Mutations in a protein active site can lead to dramatic and useful changes in protein activity. The active site, however, is sensitive to mutations due to a high density of molecular interactions, substantially reducing the likelihood of obtaining functional multipoint mutants. We introduce an atomistic and machine-learning-based approach, called high-throughput Functional Libraries (htFuncLib), that designs a sequence space in which mutations form low-energy combinations that mitigate the risk of incompatible interactions. We apply htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout, recover >16,000 unique designs encoding as many as eight active-site mutations. Many designs exhibit substantial and useful diversity in functional thermostability (up to 96 °C), fluorescence lifetime, and quantum yield. By eliminating incompatible active-site mutations, htFuncLib generates a large diversity of functional sequences. We envision that htFuncLib will be used in one-shot optimization of activity in enzymes, binders, and other proteins.


Subject(s)
Proteins , Catalytic Domain , Gene Library , Proteins/genetics , Mutation , Fluorescence , Green Fluorescent Proteins/metabolism
6.
Nat Commun ; 13(1): 6513, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316305

ABSTRACT

Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Clusterin , Heat Shock Transcription Factors , Pancreatic Neoplasms , Animals , Mice , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Clusterin/genetics , Clusterin/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment/genetics , Humans , Pancreatic Neoplasms
7.
Viruses ; 14(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893698

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Humans , Lung/pathology , Melphalan , Mice , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/metabolism , gamma-Globulins
8.
Nat Commun ; 12(1): 4851, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381047

ABSTRACT

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Subject(s)
Chemokine CXCL10/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , 3' Untranslated Regions , Chemokine CXCL10/genetics , DEAD Box Protein 58/metabolism , ELAV-Like Protein 1/metabolism , Extracellular Vesicles/metabolism , Host-Parasite Interactions , Humans , Life Cycle Stages , Malaria, Falciparum/immunology , Monocytes/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protein Biosynthesis , RNA, Protozoan/metabolism , Receptors, Immunologic/metabolism , Ribosomes/metabolism , THP-1 Cells
9.
Nat Commun ; 11(1): 6245, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33288768

ABSTRACT

In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.


Subject(s)
Colitis-Associated Neoplasms/metabolism , Extracellular Matrix/metabolism , Heat Shock Transcription Factors/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Cell Line, Tumor , Cells, Cultured , Colitis-Associated Neoplasms/genetics , Disease Models, Animal , Heat Shock Transcription Factors/genetics , Humans , Mass Spectrometry/methods , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Knockout , Proteome/genetics
10.
Sci Rep ; 10(1): 112, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924821

ABSTRACT

Recently, various opsin types, known to be involved in vision, were demonstrated to be present in human and mouse sperm cells and to be involved there in thermosensing for thermotaxis. In vision, each opsin type is restricted to specific cells. The situation in this respect in sperm cells is not known. It is also not known whether or not both signaling pathways, found to function in sperm thermotaxis, are each activated by specific opsins, as in vision. Here we addressed these questions. Choosing rhodopsin and melanopsin as test cases and employing immunocytochemical analysis with antibodies against these opsins, we found that the majority of sperm cells were stained by both antibodies, indicating that most of the cells contained both opsins. By employing mutant mouse sperm cells that do not express melanopsin combined with specific signaling inhibitors, we furthermore demonstrated that rhodopsin and melanopsin each activates a different pathway. Thus, in mammalian sperm thermotaxis, as in vision, rhodopsin and melanopsin each triggers a different signaling pathway but, unlike in vision, both opsin types coexist in the same sperm cells.


Subject(s)
Rhodopsin/metabolism , Rod Opsins/metabolism , Signal Transduction , Spermatozoa/cytology , Spermatozoa/metabolism , Taxis Response , Animals , Male , Mice
11.
Front Mar Sci ; 7: 988, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33409285

ABSTRACT

Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30-150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ15N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a, lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.

12.
Nat Cancer ; 1(7): 692-708, 2020 07.
Article in English | MEDLINE | ID: mdl-35122040

ABSTRACT

Tumors are supported by cancer-associated fibroblasts (CAFs). CAFs are heterogeneous and carry out distinct cancer-associated functions. Understanding the full repertoire of CAFs and their dynamic changes as tumors evolve could improve the precision of cancer treatment. Here we comprehensively analyze CAFs using index and transcriptional single-cell sorting at several time points along breast tumor progression in mice, uncovering distinct subpopulations. Notably, the transcriptional programs of these subpopulations change over time and in metastases, transitioning from an immunoregulatory program to wound-healing and antigen-presentation programs, indicating that CAFs and their functions are dynamic. Two main CAF subpopulations are also found in human breast tumors, where their ratio is associated with disease outcome across subtypes and is particularly correlated with BRCA mutations in triple-negative breast cancer. These findings indicate that the repertoire of CAF changes over time in breast cancer progression, with direct clinical implications.


Subject(s)
Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Animals , Cancer-Associated Fibroblasts/metabolism , Humans , Membrane Glycoproteins/genetics , Mice , S100 Calcium-Binding Protein A4/genetics , Triple Negative Breast Neoplasms/genetics
13.
Cell Death Differ ; 27(3): 984-998, 2020 03.
Article in English | MEDLINE | ID: mdl-31367012

ABSTRACT

The cullin-RING ubiquitin E3 ligase (CRL) family consists of ~250 complexes that catalyze ubiquitylation of proteins to achieve cellular regulation. All CRLs are inhibited by the COP9 signalosome complex (CSN) through both enzymatic (deneddylation) and nonenzymatic (steric) mechanisms. The relative contribution of these two mechanisms is unclear. Here, we decouple the mechanisms using CSNAP, the recently discovered ninth subunit of the CSN. We find that CSNAP reduces the affinity of CSN toward CRL complexes. Removing CSNAP does not affect deneddylation, but leads to global effects on the CRL, causing altered reproductive capacity, suppressed DNA damage response, and delayed cell cycle progression. Thus, although CSNAP is only 2% of the CSN mass, it plays a critical role in the steric regulation of CRLs by the CSN.


Subject(s)
Cullin Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Protein Subunits/metabolism , Proteostasis , Ubiquitin-Protein Ligases/metabolism , Cell Cycle/radiation effects , Cell Line , Cell Survival/radiation effects , DNA Repair/radiation effects , Humans , Models, Biological , Protein Binding/radiation effects , Proteome/metabolism , Proteostasis/radiation effects , Ultraviolet Rays
14.
Proc Natl Acad Sci U S A ; 116(44): 22366-22375, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611387

ABSTRACT

Plant photosynthetic (thylakoid) membranes are organized into complex networks that are differentiated into 2 distinct morphological and functional domains called grana and stroma lamellae. How the 2 domains join to form a continuous lamellar system has been the subject of numerous studies since the mid-1950s. Using different electron tomography techniques, we found that the grana and stroma lamellae are connected by an array of pitch-balanced right- and left-handed helical membrane surfaces of different radii and pitch. Consistent with theoretical predictions, this arrangement is shown to minimize the surface and bending energies of the membranes. Related configurations were proposed to be present in the rough endoplasmic reticulum and in dense nuclear matter phases theorized to exist in neutron star crusts, where the right- and left-handed helical elements differ only in their handedness. Pitch-balanced helical elements of alternating handedness may thus constitute a fundamental geometry for the efficient packing of connected layers or sheets.


Subject(s)
Lactuca/ultrastructure , Thylakoids/ultrastructure , Electron Microscope Tomography , Endoplasmic Reticulum/ultrastructure , Lactuca/metabolism , Photosynthesis
15.
Plant Direct ; 3(3): e00127, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31245770

ABSTRACT

The earliest visual changes of leaf senescence occur in the chloroplast as chlorophyll is degraded and photosynthesis declines. Yet, a comprehensive understanding of the sequence of catabolic events occurring in chloroplasts during natural leaf senescence is still missing. Here, we combined confocal and electron microscopy together with proteomics and biochemistry to follow structural and molecular changes during Arabidopsis leaf senescence. We observed that initiation of chlorophyll catabolism precedes other breakdown processes. Chloroplast size, stacking of thylakoids, and efficiency of PSII remain stable until late stages of senescence, whereas the number and size of plastoglobules increase. Unlike catabolic enzymes, whose level increase, the level of most proteins decreases during senescence, and chloroplast proteins are overrepresented among these. However, the rate of their disappearance is variable, mostly uncoordinated and independent of their inherent stability during earlier developmental stages. Unexpectedly, degradation of chlorophyll-binding proteins lags behind chlorophyll catabolism. Autophagy and vacuole proteins are retained at relatively high levels, highlighting the role of extra-plastidic degradation processes especially in late stages of senescence. The observation that chlorophyll catabolism precedes all other catabolic events may suggest that this process enables or signals further catabolic processes in chloroplasts.

16.
Dev Biol ; 441(1): 83-94, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29920253

ABSTRACT

FtsZ proteins of the FtsZ1 and FtsZ2 families play important roles in the initiation and progression of plastid division in plants and green algae. Arabidopsis possesses a single FTSZ1 member and two FTSZ2 members, FTSZ2-1 and FTSZ2-2. The contribution of these to chloroplast division and partitioning has been mostly investigated in leaf mesophyll tissues. Here, we assessed the involvement of the three FtsZs in plastid division at earlier stages of chloroplast differentiation. To this end, we studied the effect of the absence of specific FtsZ proteins on plastids in the vegetative shoot apex, where the proplastid-to-chloroplast transition takes place. We found that the relative contribution of the two major leaf FtsZ isoforms, FtsZ1 and FtsZ2-1, to the division process varies with cell lineage and position within the shoot apex. While FtsZ2-1 dominates division in the L1 and L3 layers of the shoot apical meristem (SAM), in the L2 layer, FtsZ1 and FtsZ2-1 contribute equally toward the process. Depletion of the third isoform, FtsZ2-2, generally resulted in stronger effects in the shoot apex than those observed in mature leaves. The implications of these findings, along with additional observations made in this work, to our understanding of the mechanisms and regulation of plastid proliferation in the shoot apex are discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Meristem/metabolism , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/genetics , Meristem/genetics , Plant Leaves/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
17.
J Phys Chem B ; 121(39): 9196-9202, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28872312

ABSTRACT

Phycobilisomes, the light-harvesting antennas of cyanobacteria, can adapt to a wide range of environments thanks to a composition and function response to stress conditions. We study how structural changes influence excitation transfer in these supercomplexes. Specifically, we show the influence of the rod length on the photon absorption and subsequent excitation transport to the core. Despite the fact that the efficiency of individual disks on the rod decreases with increasing rod length, we find an optimal length for which the average rod efficiency is maximal. Combining this study with experimental structural measurements, we propose models for the arrangement of the phycobiliproteins inside the thylakoid membranes, evaluate the importance of rod length, and predict the corresponding transport properties for different cyanobacterial species. This analysis, which links the functional and structural properties of full phycobilisome complexes, thus provides further rationales to help resolve their exact structure.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/chemistry , Light-Harvesting Protein Complexes/chemistry , Phycobilisomes/chemistry , Thylakoids/chemistry , Adaptation, Ocular
18.
Proc Natl Acad Sci U S A ; 114(35): 9481-9486, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808031

ABSTRACT

In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.


Subject(s)
Cyanobacteria/physiology , Desert Climate , Soil Microbiology , Light-Harvesting Protein Complexes , Photosynthesis/physiology , Phycobilisomes/physiology
19.
PLoS One ; 12(4): e0175413, 2017.
Article in English | MEDLINE | ID: mdl-28403186

ABSTRACT

Differential signaling of the type I interferon receptor (IFNAR) has been correlated with the ability of its subunit, IFNAR1, to differentially recognize a large spectrum of different ligands, which involves intricate conformational re-arrangements of multiple interacting domains. To shed light onto the structural determinants governing ligand recognition, we compared the force-induced unfolding of the IFNAR1 ectodomain when bound to interferon and when free, using the atomic force microscope and steered molecular dynamics simulations. Unexpectedly, we find that IFNAR1 is easier to mechanically unfold when bound to interferon than when free. Analysis of the structures indicated that the origin of the reduction in unfolding forces is a conformational change in IFNAR1 induced by ligand binding.


Subject(s)
Interferon Type I/chemistry , Receptor, Interferon alpha-beta/chemistry , Humans , Microscopy, Atomic Force , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Unfolding , Thermodynamics
20.
Biochim Biophys Acta ; 1857(12): 1879-1891, 2016 12.
Article in English | MEDLINE | ID: mdl-27663073

ABSTRACT

The cyanobacterium Synechocystis PCC 6803 possesses three Rieske isoforms: PetC1, PetC2 and PetC3. While PetC1 and PetC2 have been identified as alternative subunits of the cytochrome b6f complex (b6f), PetC3 was localized exclusively within the plasma membrane. The spatial separation of PetC3 from the photosynthetic and respiratory protein complexes raises doubt in its involvement in bioenergetic electron transfer. Here we report a detailed structural and functional characterization of the cyanobacterial PetC3 protein family indicating that PetC3 is not a component of the b6f and the photosynthetic electron transport as implied by gene annotation. Instead PetC3 has a distinct function in cell envelope homeostasis. Especially proteomic analysis shows that deletion of petC3 in Synechocystis PCC 6803 primarily affects cell envelope proteins including many nutrient transport systems. Therefore, the observed downregulation in the photosynthetic electron transport - mainly caused by photosystem 2 inactivation - might constitute a stress adaptation. Comprehensive in silico sequence analyses revealed that PetC3 proteins are periplasmic lipoproteins tethered to the plasma membrane with a subclass consisting of soluble periplasmic proteins, i.e. their N-terminal domain is inconsistent with their integration into the b6f. For the first time, the structure of PetC3 was determined by X-ray crystallography at an atomic resolution revealing significant high similarities to non-b6f Rieske subunits in contrast to PetC1. These results suggest that PetC3 affects processes in the periplasmic compartment that only indirectly influence photosynthetic electron transport. For this reason, we suggest to rename "Photosynthetic electron transport Chain 3" (PetC3) proteins as "periplasmic Rieske proteins" (Prp).


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Electron Transport Chain Complex Proteins/metabolism , Membrane Transport Proteins/metabolism , Photosynthesis , Synechocystis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Electron Transport , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Chain Complex Proteins/genetics , Energy Transfer , Homeostasis , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Periplasm/metabolism , Phylogeny , Protein Interaction Domains and Motifs , Proteomics , Spectrometry, Fluorescence , Structure-Activity Relationship , Synechocystis/genetics , Synechocystis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...