Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 464-473, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38860981

ABSTRACT

Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.


Subject(s)
Archaeal Proteins , Sulfolobus solfataricus , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Protein Conformation , Binding Sites , RNA, Transfer, Met/chemistry , RNA, Transfer, Met/metabolism
2.
Mol Biol (Mosk) ; 52(1): 106-111, 2018.
Article in Russian | MEDLINE | ID: mdl-29512642

ABSTRACT

The L1 protuberance of the ribosome includes two domain ribosomal protein L1 and three helices of 23S rRNA (H76, H77, and H78) with interconnecting loops A and B. Helix 78 consists of two parts, i.e., H78a and H78b. A comparison of the available structural data of L1-RNA complexes with the obtained kinetic data made it possible to determine the influence of the nonconserved regions of Thermus thermophilus L1-protuberance on the mutual affinity of the L1 protein and 23S rRNA. It has been shown that the N-terminal helix of the protein and 78b helix of 23S rRNA are essential for the formation of an additional intermolecular contact, which is separated in the protein from the main site of L1-rRNA interaction by a flexible connection. This results in a rise in the TthL1-rRNA affinity. At the same time, the elongation of the 76 helix has no effect on rRNA-protein binding.


Subject(s)
Bacterial Proteins/chemistry , RNA, Ribosomal, 23S/chemistry , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Thermus thermophilus/chemistry , Kinetics , Nucleic Acid Conformation , Protein Binding
3.
Biochemistry (Mosc) ; 81(10): 1205-1212, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27908245

ABSTRACT

The crystal structure of the γ-subunit of translation initiation factor 2 from the archaeon Sulfolobus solfataricus (SsoIF2γ) has been solved based on perfectly hemihedral twinned data. The protein was cocrystallized with the 10-fold molar excess of GTP analog (GDPCP) over protein. However, no nucleotide was found in the structure, and the model demonstrated the apo form of the protein. Two slightly different molecules in the asymmetric unit of the crystal are related by the non-crystallographic 2-fold axis and form a tightly associated dimer. This dimer is stabilized by an intermolecular hydrophobic core and hydrogen bonds. Lack of GDPCP in the nucleotide-binding pocket of the γ-subunit and significant excess of dimers over monomers in the crystallization solution suggest that these dimers are the building blocks of the crystal. Contrary to SsoIF2γ monomers, these dimers are able to crystallize in two oppositely oriented slightly different crystal domains, thus forming a twinned crystal. Comparison of crystallization conditions for the twinned and untwinned crystals of apo SsoIF2γ showed that stabilization of the dimers in the solution may be caused by higher sodium salt concentration. Since amino acid residues involved in intermolecular contacts in the dimer are responsible for binding of the γ- and α-subunits within SsoIF2, increase in sodium salt concentration may prevent functioning of SsoIF2 in the cell.


Subject(s)
Peptide Initiation Factors/chemistry , Protein Subunits/chemistry , Sulfolobus solfataricus/chemistry , Crystallography, X-Ray
4.
Biol Chem ; 379(7): 795-805, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9705143

ABSTRACT

Crystal and solution structures of fourteen ribosomal proteins from thermophilic bacteria have been determined during the last decade. This paper reviews structural studies of ribosomal proteins from Thermus thermophilus carried out at the Institute of Protein Research (Pushchino, Russia) in collaboration with the University of Lund (Lund, Sweden) and the Center of Structural Biochemistry (Karolinska Institute, Huddinge, Sweden). New experimental data on the crystal structure of the ribosomal protein L30 from T. thermophilus are also included.


Subject(s)
Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Thermus thermophilus/chemistry , Bacterial Proteins/metabolism , Binding Sites , RNA/metabolism , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...