Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
Chemistry ; 29(55): e202301530, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37414735

ABSTRACT

The COVID-19 pandemic has had a devastating impact on global health, highlighting the need to understand how the SARS-CoV-2 virus damages the lungs in order to develop effective treatments. Recent research has shown that patients with COVID-19 experience severe oxidative damage to various biomolecules. We propose that the overproduction of reactive oxygen species (ROS) in SARS-CoV-2 infection involves an interaction between copper ions and the virus's spike protein. We tested two peptide fragments, Ac-ELDKYFKNH-NH2 (L1) and Ac-WSHPQFEK-NH2 (L2), derived from the spike protein of the Wuhan strain and the ß variant, respectively, and found that they bind Cu(II) ions and form a three-nitrogen complexes at lung pH. Our research demonstrates that these complexes trigger the overproduction of ROS, which can break both DNA strands and transform DNA into its linear form. Using A549 cells, we demonstrated that ROS overproduction occurs in the mitochondria, not in the cytoplasm. Our findings highlight the importance of the interaction between copper ions and the virus's spike protein in the development of lung damage and may aid in the development of therapeutic procedures.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Copper/chemistry , Reactive Oxygen Species , Spike Glycoprotein, Coronavirus/chemistry , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...