Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38683195

ABSTRACT

The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.


Subject(s)
Feces , Gastrointestinal Microbiome , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Gastrointestinal Microbiome/genetics , Feces/virology , Feces/microbiology , Nanopores , Nanopore Sequencing/methods , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Virome/genetics , Sequence Analysis, DNA/methods
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139096

ABSTRACT

Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.


Subject(s)
Fatigue Syndrome, Chronic , Humans , Virome , Host Microbial Interactions , DNA
3.
J Med Microbiol ; 72(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37910167

ABSTRACT

Introduction. Bacteroides fragilis is a Gram-negative anaerobe that is a member of the human gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. B. fragilis comprises two distinct groups - divisions I and II - characterized by the presence/absence of genes [cepA and ccrA (cfiA), respectively] that confer resistance to ß-lactam antibiotics by either serine or metallo-ß-lactamase production. No large-scale analyses of publicly available B. fragilis sequence data have been undertaken, and the resistome of the species remains poorly defined.Hypothesis/Gap Statement. Reclassification of divisions I and II B. fragilis as two distinct species has been proposed but additional evidence is required.Aims. To investigate the genomic diversity of GenBank B. fragilis genomes and establish the prevalence of division I and II strains among publicly available B. fragilis genomes, and to generate further evidence to demonstrate that B. fragilis division I and II strains represent distinct genomospecies.Methodology. High-quality (n=377) genomes listed as B. fragilis in GenBank were included in pangenome and functional analyses. Genome data were also subject to resistome profiling using The Comprehensive Antibiotic Resistance Database.Results. Average nucleotide identity and phylogenetic analyses showed B. fragilis divisions I and II represent distinct species: B. fragilis sensu stricto (n=275 genomes) and B. fragilis A (n=102 genomes; Genome Taxonomy Database designation), respectively. Exploration of the pangenome of B. fragilis sensu stricto and B. fragilis A revealed separation of the two species at the core and accessory gene levels.Conclusion. The findings indicate that B. fragilis A, previously referred to as division II B. fragilis, is an individual species and distinct from B. fragilis sensu stricto. The B. fragilis pangenome analysis supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing that divisions I and II are two separate species. In addition, it was confirmed that differences in the accessory genes of B. fragilis divisions I and II are primarily associated with carbohydrate metabolism and suggest that differences other than antimicrobial resistance could also be used to distinguish between these two species.


Subject(s)
Bacterial Infections , Bacteroides fragilis , Humans , Bacteroides fragilis/genetics , Phylogeny , Genomics , Databases, Factual
4.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37070958

ABSTRACT

AIMS: This study aimed to characterize the lytic phage vB_KmiS-Kmi2C, isolated from sewage water on a GES-positive strain of Klebsiella michiganensis. METHODS AND RESULTS: Comparative phylogenetic and network-based analyses were used to characterize the genome of phage vB_KmiS-Kmi2C (circular genome of 42 234 bp predicted to encode 55 genes), demonstrating it shared little similarity with other known phages. The phage was lytic on clinical strains of K. oxytoca (n = 2) and K. michiganensis (n = 4), and was found to both prevent biofilm formation and disrupt established biofilms produced by these strains. CONCLUSIONS: We have identified a phage capable of killing clinically relevant members of the K. oxytoca complex (KoC). The phage represents a novel virus family (proposed name Dilsviridae) and genus (proposed name Dilsvirus).


Subject(s)
Bacteriophages , Bacteriophages/genetics , Klebsiella oxytoca/genetics , Phylogeny , Biofilms , Genome, Viral
5.
Front Microbiol ; 11: 583378, 2020.
Article in English | MEDLINE | ID: mdl-33193224

ABSTRACT

Bacteroides spp. are part of the human intestinal microbiota but can under some circumstances become clinical pathogens. Phages are a potentially valuable therapeutic treatment option for many pathogens, but phage therapy for pathogenic Bacteroides spp. including Bacteroides fragilis is currently limited to three genome-sequenced phages. Here we describe the isolation from sewage wastewater and genome of a lytic phage, vB_BfrS_23, that infects and kills B. fragilis strain GB124. Transmission electron microscopy identified this phage as a member of the Siphoviridae family. The phage is stable when held at temperatures of 4 and 60°C for 1 h. It has a very narrow host range, only infecting one host from a panel of B. fragilis strains (n = 8). Whole-genome sequence analyses of vB_BfrS_23 determined it is double-stranded DNA phage and is circularly permuted, with a genome of 48,011 bp. The genome encodes 73 putative open reading frames. We also sequenced the host bacterium, B. fragilis GB124 (5.1 Mb), which has two plasmids of 43,923 and 4,138 bp. Although this phage is host specific, its isolation together with the detailed characterization of the host B. fragilis GB124 featured in this study represent a useful starting point from which to facilitate the future development of highly specific therapeutic agents. Furthermore, the phage could be a novel tool in determining water (and water reuse) treatment efficacy, and for identifying human fecal transmission pathways within contaminated environmental waters and foodstuffs.

6.
Clin Sci (Lond) ; 132(5): 523-542, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29523751

ABSTRACT

Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease of unknown aetiology. It is a heterogeneous disease characterized by various inflammatory, immune, viral, neurological and endocrine symptoms. Several microbiome studies have described alterations in the bacterial component of the microbiome (dysbiosis) consistent with a possible role in disease development. However, in focusing on the bacterial components of the microbiome, these studies have neglected the viral constituent known as the virome. Viruses, particularly those infecting bacteria (bacteriophages), have the potential to alter the function and structure of the microbiome via gene transfer and host lysis. Viral-induced microbiome changes can directly and indirectly influence host health and disease. The contribution of viruses towards disease pathogenesis is therefore an important area for research in ME/CFS. Recent advancements in sequencing technology and bioinformatics now allow more comprehensive and inclusive investigations of human microbiomes. However, as the number of microbiome studies increases, the need for greater consistency in study design and analysis also increases. Comparisons between different ME/CFS microbiome studies are difficult because of differences in patient selection and diagnosis criteria, sample processing, genome sequencing and downstream bioinformatics analysis. It is therefore important that microbiome studies adopt robust, reproducible and consistent study design to enable more reliable and valid comparisons and conclusions to be made between studies. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the pitfalls and challenges associated with microbiome studies are discussed.


Subject(s)
Bacteriophages/physiology , Fatigue Syndrome, Chronic/microbiology , Fatigue Syndrome, Chronic/virology , Gastrointestinal Microbiome/physiology , Bacteria/growth & development , Bacteria/virology , Dysbiosis/microbiology , Dysbiosis/physiopathology , Dysbiosis/virology , Fatigue Syndrome, Chronic/physiopathology , Host Microbial Interactions , Humans , Inflammation/microbiology , Inflammation/physiopathology , Inflammation/virology , Models, Biological
7.
PLoS Negl Trop Dis ; 10(6): e0004615, 2016 06.
Article in English | MEDLINE | ID: mdl-27280729

ABSTRACT

BACKGROUND: Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications. METHODOLOGY/PRINCIPAL FINDINGS: Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C) for a range of durations (0-48 hours), followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity) to those found in the venom gland. CONCLUSIONS/SIGNIFICANCE: The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide more flexibility to performing fieldwork on venomous snakes in tropical conditions.


Subject(s)
Elapidae/physiology , RNA, Messenger/chemistry , Snake Venoms/chemistry , Viperidae/physiology , Amino Acid Sequence , Animals , Guanidines/chemistry , Phenols/chemistry , RNA, Messenger/genetics , Specimen Handling , Temperature , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...