Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 12(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707905

ABSTRACT

Previous research has not considered the effect of high amylose wheat noodles on postprandial glycaemia. The aim of the study is to investigate the effect of consumption of high amylose noodles on postprandial glycaemia over 2-h periods by monitoring changes in blood glucose concentration and calculating the total area under the blood glucose concentration curve. Twelve healthy young adults were recruited to a repeated measure randomised, single-blinded crossover trial to compare the effect of consuming noodles (180 g) containing 15%, 20% and 45% amylose on postprandial glycaemia. Fasting blood glucose concentrations were taken via finger-prick blood samples. Postprandial blood glucose concentrations were taken at 15, 30, 45, 60, 90 and 120 min. Subjects consuming high amylose noodles made with flour containing 45% amylose had significantly lower blood glucose concentration at 15, 30 and 45 min (5.5 ± 0.11, 6.1 ± 0.11 and 5.6 ± 0.11 mmol/L; p = 0.01) compared to subjects consuming low amylose noodles with 15% amylose (5.8 ± 0.12, 6.6 ± 0.12 and 5.9 ± 0.12 mmol/L). The total area under the blood glucose concentration curve after consumption of high amylose noodles with 45% amylose was 640.4 ± 9.49 mmol/L/min, 3.4% lower than consumption of low amylose noodles with 15% amylose (662.9 ± 9.49 mmol/L/min), p = 0.021. Noodles made from high amylose wheat flour attenuate postprandial glycaemia in healthy young adults, as characterised by the significantly lower blood glucose concentration and a 3.4% reduction in glycaemic response.


Subject(s)
Amylose/analysis , Blood Glucose/metabolism , Flour/analysis , Postprandial Period , Triticum/chemistry , Adult , Australia , Body Mass Index , Cross-Over Studies , Female , Food Handling , Humans , Male , Starch/analysis , Young Adult
2.
Front Plant Sci ; 9: 1356, 2018.
Article in English | MEDLINE | ID: mdl-30245701

ABSTRACT

Late maturity α-amylase (LMA) and pre-harvest sprouting (PHS) are both recognized as environmentally induced grain quality defects resulting from abnormally high levels of α-amylase. LMA is a more recently identified quality issue that is now receiving increasing attention worldwide and whose prevalence is now seen as impeding the development of superior quality wheat varieties. LMA is a genetic defect present in specific wheat genotypes and is characterized by elevated levels of the high pI TaAMY1 α-amylase, triggered by environmental stress during wheat grain development. TaAMY1 remains present in the aleurone through the harvest, lowering Falling Number (FN) at receival, causing a down-grading of the grain, often to feed grade, thus reducing the farmers' income. This downgrading is based on the assumption within the grain industry that, as for PHS, a low FN represents poor quality grain. Consequently any wheat line possessing low FN or high α-amylase levels is automatically considered a poor bread wheat despite there being no published evidence to date, to show that LMA is detrimental to end product quality. To evaluate the validity of this assumption a comprehensive evaluation of baking properties was performed from LMA prone lines using a subset of tall non-Rht lines from a multi-parent advanced generation inter-cross (MAGIC) wheat population grown at three different sites. LMA levels were determined along with quality parameters including end product functionality such as oven spring, bread loaf volume and weight, slice area and brightness, gas cell number and crumb firmness. No consistent or significant phenotypic correlation was found between LMA related FN and any of the quality traits. This manuscript provides for the first time, compelling evidence that LMA has limited impact on bread baking end product functionality.

3.
Plant Biotechnol J ; 14(1): 364-76, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26010869

ABSTRACT

Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality.


Subject(s)
Bread , Flour , Protein Engineering/methods , Seeds/enzymology , Triticum/embryology , alpha-Amylases/metabolism , Starch/analysis , Viscosity
4.
Plant Biotechnol J ; 14(1): 398-408, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25989474

ABSTRACT

Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species.


Subject(s)
Cotyledon/growth & development , Endosperm/enzymology , Germination , Glucans/metabolism , Phosphotransferases (Paired Acceptors)/metabolism , Seeds/anatomy & histology , Triticum/enzymology , Water/metabolism , Amylopectin/metabolism , Hardness , Models, Biological , Organ Size , Phosphates/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Proteins , Plants, Genetically Modified , Seedlings/growth & development , Starch/metabolism , Transgenes , Triticum/anatomy & histology , Triticum/embryology , alpha-Amylases/metabolism
5.
Amino Acids ; 44(3): 1061-71, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232769

ABSTRACT

The quality of wheat (Triticum aestivum L.) for making bread is largely due to the strength and extensibility of wheat dough, which in turn is due to the properties of polymeric glutenin. Polymeric glutenin consists of high- and low-molecular-weight glutenin protein subunits linked by disulphide bonds between cysteine residues. Glutenin subunits differ in their effects on dough mixing properties. The research presented here investigated the effect of a specific, recently discovered, glutenin subunit on dough mixing properties. This subunit, Bx7.1, is unusual in that it has a cysteine in its repetitive domain. With site-directed mutagenesis of the gene encoding Bx7.1, a guanine in the repetitive domain was replaced by an adenine, to provide a mutant gene encoding a subunit (MutBx7.1) in which the repetitive-domain cysteine was replaced by a tyrosine residue. Bx7.1, MutBx7.1 and other Bx-type glutenin subunits were heterologously expressed in Escherichia coli and purified. This made it possible to incorporate each individual subunit into wheat flour and evaluate the effect of the cysteine residue on dough properties. The Bx7.1 subunit affected dough mixing properties differently from the other subunits. These differences are due to the extra cysteine residue, which may interfere with glutenin polymerisation through cross-linkage within the Bx7.1 subunit, causing this subunit to act as a chain terminator.


Subject(s)
Cysteine/chemistry , Glutens/chemistry , Triticum/chemistry , Amino Acid Motifs , Amino Acid Sequence , Bread/analysis , Cysteine/genetics , Flour/analysis , Glutens/genetics , Molecular Sequence Data , Molecular Weight , Protein Subunits/chemistry , Protein Subunits/genetics , Sequence Alignment , Triticum/genetics
6.
Mar Drugs ; 9(7): 1176-1186, 2011.
Article in English | MEDLINE | ID: mdl-21822409

ABSTRACT

Hoki (Macruronus novaezelandiae) and ling (Genypterus blacodes) are cold-water fish caught in New Zealand waters. Their skins are a major component of the post-processing waste stream. Valuable products could be developed from the skins, as they are primarily composed of collagen, which has many commercial applications. We prepared acid soluble collagens (ASC) from hoki and ling skins, and analyzed their thermal denaturation properties using a Rapid Visco™ Analyzer. At slower heating rates the denaturation temperature (TD) of hoki and ling collagens decreased. This result is consistent with the model of irreversible rate kinetics for the denaturation of collagen. We determined the effects of solvents that disrupt hydrogen bonding on ASC stability. Increasing concentrations of urea from 0.1 M to 1.0 M and acetic acid from 0.1 M to 0.5 M decreased TD. This resulted from the effects of these reagents on the hydrogen bonds that stabilize the collagen triple helix.


Subject(s)
Collagen/chemistry , Fish Proteins/chemistry , Fishes/metabolism , Transition Temperature , Acetic Acid/metabolism , Animals , Biological Assay , Biological Products/chemistry , Biological Products/metabolism , Collagen/drug effects , Collagen/metabolism , Fish Proteins/metabolism , Hot Temperature , Hydrogen Bonding/drug effects , Hydroxyproline/analysis , Molecular Structure , New Zealand , Oceans and Seas , Protein Denaturation , Seafood , Skin/metabolism , Solvents/metabolism , Urea/metabolism , Viscosity
7.
Theor Appl Genet ; 121(5): 815-28, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20495901

ABSTRACT

The genetic and phenotypic relationships among wheat quality predictors and sponge and dough bread making were evaluated in a population derived from a cross between an Australian cultivar 'Chara' and a Canadian cultivar 'Glenlea'. The genetic correlation across sites for sponge and dough loaf volume was high; however, phenotypic correlations across sites for loaf volume were relatively low compared with rheological tests. The large difference between sites was most likely due to temperature differences during grain development reflected in a decrease in the percentage of unextractable polymeric protein and mixing time. Predictive tests (mixograph, extensograph, protein content and composition, micro-zeleny and flour viscosity) showed inconsistent and generally poor correlations with end-product performance (baking volume and slice area) at both sites, with no single parameter being effective as a predictor of end-product performance. The difference in the relationships between genetic and phenotypic correlations highlights the requirement to develop alternative methods of selection for breeders and bakers in order to maximise both genetic gain and predictive assessment of grain quality.


Subject(s)
Bread , Flour , Food Technology/methods , Quantitative Trait, Heritable , Triticum/genetics , Genotype , Phenotype , Plant Proteins/metabolism , Seeds/metabolism , Temperature , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...