Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Microsc Microanal ; 29(Supplement_1): 480-481, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613120
2.
Microsc Microanal ; : 1-12, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36052846

ABSTRACT

Electron-excited X-ray microanalysis with energy-dispersive spectrometry (EDS) proceeds through the application of the software that extracts characteristic X-ray intensities and performs corrections for the physics of electron and X-ray interactions with matter to achieve quantitative elemental analysis. NIST DTSA-II is an open-access, fully documented, and freely available comprehensive software platform for EDS quantification, measurement optimization, and spectrum simulation. Spectrum simulation with DTSA-II enables the prediction of the EDS spectrum from any target composition for a specified electron dose and for the solid angle and window parameters of the EDS spectrometer. Comparing the absolute intensities for measured and simulated spectra reveals correspondence within ±25% relative to K-shell and L-shell characteristic X-ray peaks in the range of 1­11 keV. The predicted M-shell intensity exceeds the measured value by a factor of 1.4­2.2 in the range 1­3 keV. The X-ray continuum (bremsstrahlung) generally agrees within ±10% over the range of 1­10 keV. Simulated EDS spectra are useful for developing an analytical strategy for challenging problems such as estimating trace detection levels.

3.
MRS Adv ; 7(31)2022.
Article in English | MEDLINE | ID: mdl-36619829

ABSTRACT

NIST DTSA-II is a free, open access, and fully-documented comprehensive software platform for electron-excited X-ray microanalysis with energy dispersive spectrometry (EDS), including tools for quantification, measurement optimization, and spectrum simulation. EDS simulation utilizes a Monte Carlo electron trajectory simulation that includes characteristic and continuum X-ray generation, self-absorption, EDS window absorption, and energy-to-charge conversion leading to peak broadening. Spectra are simulated on an absolute basis considering electron dose and spectrometer parameters. Simulated and measured spectra agree within ± 25% relative for K-shell and L-shell characteristic X-ray peaks from 1 to 11 keV, while the predicted M-shell intensity was found to exceed the measured value by a factor of 1.4-2.2 from 1 to 3 keV. The X-ray continuum (bremsstrahlung) intensity agreed within ± 10% over the photon energy range from 1 to 10 keV for elements from boron to bismuth. Simulated spectra can be used to develop analytical strategy, such as assessing detection of trace constituents.

4.
Microsc Microanal ; : 1-34, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34474694

ABSTRACT

Quantification of electron-exited X-ray spectra following the standards-based "k-ratio" (unknown/standard intensity) protocol with corrections for "matrix effects" (electron energy loss and backscattering, X-ray absorption, and secondary X-ray fluorescence) is a well-established method with a record of rigorous testing and extensive experience. Two recent studies by Gopon et al. working in the Fe­Si system and Llovet et al. working in the Ni­Si system have renewed interest in studying the accuracy of measurements made using L-shell X-ray peaks. Both have reported unexpectedly large deviations in analytical accuracy when analyzing intermetallic compounds when using the low photon energy Fe or Ni L-shell X-ray peaks with pure element standards and wavelength-dispersive X-ray spectrometry. This study confirms those observations on the Ni-based intermetallic compounds using energy-dispersive X-ray spectrometry and extends the study of analysis with low photon energy L-shell peaks to a wide range of elements, Ti to Se. Within this range of elements, anomalies in analytical accuracy have been found for Fe, Co, and Ge in addition to Ni. For these elements, the use of compound standards instead of pure elements usually resulted in significantly improved analytical accuracy. However, compound standards do not always provide satisfactory accuracy as is demonstrated for L-shell peak analysis in the Fe­S system: FeS and FeS2 unexpectedly do not provide good accuracy when used as mutual standards.

5.
Microsc Microanal ; 25(5): 1075-1105, 2019 10.
Article in English | MEDLINE | ID: mdl-31439058

ABSTRACT

2018 marked the 50th anniversary of the introduction of energy dispersive X-ray spectrometry (EDS) with semiconductor detectors to electron-excited X-ray microanalysis. Initially useful for qualitative analysis, EDS has developed into a fully quantitative analytical tool that can match wavelength dispersive spectrometry for accuracy in the determination of major (mass concentration C > 0.1) and minor (0.01 ≤ C ≤ 0.1) constituents, and useful accuracy can extend well into the trace (0.001 < C < 0.01) constituent range even when severe peak interference occurs. Accurate analysis is possible for low atomic number elements (B, C, N, O, and F), and at low beam energy, which can optimize lateral and depth spatial resolution. By recording a full EDS spectrum at each picture element of a scan, comprehensive quantitative compositional mapping can also be performed.

6.
Microsc Microanal ; 24(4): 350-373, 2018 08.
Article in English | MEDLINE | ID: mdl-30175703

ABSTRACT

When analyzing an unknown by electron-excited energy dispersive X-ray spectrometry, with the entire periodic table possibly in play, how does the analyst discover minor and trace constituents when their peaks are overwhelmed by the intensity of an interfering peak(s) from a major constituent? In this paper, we advocate for and demonstrate an iterative analytical approach, alternating qualitative analysis (peak identification) and standards-based quantitative analysis with peak fitting. This method employs two "tools": (1) monitoring of the "raw analytical total," which is the sum of all measured constituents as well as any such as oxygen calculated by the method of assumed stoichiometry, and (2) careful inspection of the "peak fitting residual spectrum" that is constructed as part of the quantitative analysis procedure in the software engine DTSA-II (a pseudo-acronym) from the National Institute of Standards and Technology. Elements newly recognized after each round are incorporated into the next round of quantitative analysis until the limits of detection are reached, as defined by the total spectrum counts.

7.
Microsc Microanal ; 22(4): 735-53, 2016 08.
Article in English | MEDLINE | ID: mdl-27515566

ABSTRACT

Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

8.
Microsc Microanal ; 22(3): 520-35, 2016 06.
Article in English | MEDLINE | ID: mdl-27329308

ABSTRACT

Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.

9.
J Mater Sci ; 50(2): 493-518, 2015.
Article in English | MEDLINE | ID: mdl-26346887

ABSTRACT

Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s.

10.
Microsc Microanal ; 21(5): 1327-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26365439

ABSTRACT

A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family.

11.
Scanning ; 35(3): 141-68, 2013.
Article in English | MEDLINE | ID: mdl-22886950

ABSTRACT

Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more.

12.
Anal Chem ; 84(22): 9956-62, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23088729

ABSTRACT

It has been over 60 years since Castaing (Castaing, R. Application of Electron Probes to Local Chemical and Crystallographic Analysis. Ph.D. Thesis, University of Paris, Paris, France, 1951; translated by P. Duwez and D. Wittry, California Institute of Technology, 1955) introduced the technique of electron probe X-ray microanalysis (EPMA), yet the community remains unable to quantify some of the largest terms in the technique's uncertainty budget. Historically, the EPMA community has assigned uncertainties to its measurements which reflect the measurement precision portion of the uncertainty budget and omitted terms related to the measurement accuracy. Yet, in many cases, the precision represents only a small fraction of the total budget. This paper addresses this shortcoming by considering two significant sources of uncertainty in the quantitative matrix correction models--the mass absorption coefficient, [µ/ρ], and the backscatter coefficient, η. Understanding the influence of these sources provides insight into the utility of EPMA measurements, and equally important, it allows practitioners to develop strategies to optimize measurement accuracy by minimizing the influence of poorly known model parameters.

13.
Microsc Microanal ; 18(4): 892-904, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22846890

ABSTRACT

The accuracy and precision of X-ray intensity measurements with a silicon drift detector (SDD) are compared with the same measurements performed on a wavelength dispersive spectrometer (WDS) for a variety of elements in a variety of materials. In cases of major (>0.10 mass fraction) and minor (>0.01 mass fraction) elements, the SDD is demonstrated to perform as well or better than the WDS. This is demonstrated both for simple cases in which the spectral peaks do not interfere (SRM-481, SRM-482, and SRM-479a), and for more difficult cases in which the spectral peaks have significant interferences (the Ba L/Ti K lines in a series of Ba/Ti glasses and minerals). We demonstrate that even in the case of significant interference high count SDD spectra are capable of accurately measuring Ti in glasses with Ba:Ti mass fraction ratios from 2.7:1 to 23.8:1. The results suggest that for many measurements wavelength spectrometry can be replaced with an SDD with improved accuracy and precision.

14.
Microsc Microanal ; 17(6): 903-10, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22067917

ABSTRACT

Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Trace Elements/analysis , Artifacts , Electrons , Monte Carlo Method , Scattering, Radiation , Silicon/chemistry , Spectrometry, X-Ray Emission/methods , X-Rays
15.
Scanning ; 33(3): 174-92, 2011.
Article in English | MEDLINE | ID: mdl-21638289

ABSTRACT

The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast.

16.
Microsc Microanal ; 17(3): 410-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21600071

ABSTRACT

X-ray elemental mapping and X-ray spectrum imaging are powerful microanalytical tools. However, their scope is often limited spatially by the raster area of a scanning electron microscope or microprobe. Limited sampling size becomes a significant issue when large area (>10 cm²), heterogeneous materials such as concrete samples or others must be examined. In such specimens, macro-scale structures, inclusions, and concentration gradients are often of interest, yet microbeam methods are insufficient or at least inefficient for analyzing them. Such requirements largely exclude the samples of interest presented in this article from electron probe microanalysis. Micro X-ray fluorescence-X-ray spectrum imaging (µXRF-XSI) provides a solution to the problem of macro-scale X-ray imaging through an X-ray excitation source, which can be used to analyze a variety of large specimens without many of the limitations found in electron-excitation sources. Using a mid-sized beam coupled with an X-ray excitation source has a number of advantages, such as the ability to work at atmospheric pressure and lower limits of detection owing to the absence of electron-induced bremsstrahlung. µXRF-XSI also acts as a complement, where applicable, to electron microbeam X-ray output, highlighting areas of interest for follow-up microanalysis at a finer length scale.

17.
Microsc Microanal ; 16(1): 1-12, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20030913

ABSTRACT

Bulk silicon-germanium (SiGe) alloys and two SiGe thick films (4 and 5 microm) on Si wafers were tested with the electron probe microanalyzer (EPMA) using wavelength dispersive spectrometers (WDS) for heterogeneity and composition for use as reference materials needed by the microelectronics industry. One alloy with a nominal composition of Si0.86Ge0.14 and the two thick films with nominal compositions of Si0.90Ge0.10 and Si0.75Ge0.25 on Si, evaluated for micro- and macroheterogeneity, will make good microanalysis reference materials with an overall expanded heterogeneity uncertainty of 1.1% relative or less for Ge. The bulk Ge composition in the Si0.86Ge0.14 alloy was determined to be 30.228% mass fraction Ge with an expanded uncertainty of the mean of 0.195% mass fraction. The thick films were quantified with WDS-EPMA using both the Si0.86Ge0.14 alloy and element wafers as reference materials. The Ge concentration was determined to be 22.80% mass fraction with an expanded uncertainty of the mean of 0.12% mass fraction for the Si0.90Ge0.10 wafer and 43.66% mass fraction for the Si0.75Ge0.25 wafer with an expanded uncertainty of the mean of 0.25% mass fraction. The two thick SiGe films will be issued as National Institute of Standards and Technology Reference Materials (RM 8905).

19.
Arthritis Res Ther ; 11(5): R159, 2009.
Article in English | MEDLINE | ID: mdl-19857267

ABSTRACT

INTRODUCTION: Calcified deposits (CDs) in skin and muscles are common in juvenile dermatomyositis (DM), and less frequent in adult DM. Limited information exists about the microstructure and composition of these deposits, and no information is available on their elemental composition and contents, mineral density (MD) and stiffness. We determined the microstructure, chemical composition, MD and stiffness of CDs obtained from DM patients. METHODS: Surgically-removed calcinosis specimens were analyzed with fourier transform infrared microspectroscopy in reflectance mode (FTIR-RM) to map their spatial distribution and composition, and with scanning electron microscopy/silicon drift detector energy dispersive X-ray spectrometry (SEM/SDD-EDS) to obtain elemental maps. X-ray diffraction (XRD) identified their mineral structure, X-ray micro-computed tomography (microCT) mapped their internal structure and 3D distribution, quantitative backscattered electron (qBSE) imaging assessed their morphology and MD, nanoindentation measured their stiffness, and polarized light microscopy (PLM) evaluated the organic matrix composition. RESULTS: Some specimens were composed of continuous carbonate apatite containing small amounts of proteins with a mineral to protein ratio much higher than in bone, and other specimens contained scattered agglomerates of various sizes with similar composition (FTIR-RM). Continuous or fragmented mineralization was present across the entire specimens (microCT). The apatite was much more crystallized than bone and dentin, and closer to enamel (XRD) and its calcium/phosphorous ratios were close to stoichiometric hydroxyapatite (SEM/SDD-EDS). The deposits also contained magnesium and sodium (SEM/SDD-EDS). The MD (qBSE) was closer to enamel than bone and dentin, as was the stiffness (nanoindentation) in the larger dense patches. Large mineralized areas were typically devoid of collagen; however, collagen was noted in some regions within the mineral or margins (PLM). qBSE, FTIR-RM and SEM/SDD-EDS maps suggest that the mineral is deposited first in a fragmented pattern followed by a wave of mineralization that incorporates these particles. Calcinosis masses with shorter duration appeared to have islands of mineralization, whereas longstanding deposits were solidly mineralized. CONCLUSIONS: The properties of the mineral present in the calcinosis masses are closest to that of enamel, while clearly differing from bone. Calcium and phosphate, normally present in affected tissues, may have precipitated as carbonate apatite due to local loss of mineralization inhibitors.


Subject(s)
Calcinosis/pathology , Myositis/pathology , Adolescent , Child , Child, Preschool , Female , Humans , Imaging, Three-Dimensional , Male , Microscopy, Electron, Scanning , Middle Aged , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared
20.
Scanning ; 31(3): 91-101, 2009.
Article in English | MEDLINE | ID: mdl-19533682

ABSTRACT

Automated peak identification in electron beam-excited X-ray microanalysis with energy dispersive X-ray spectrometry has been shown to be subject to occasional mistakes even on well-separated, high-intensity peaks arising from major constituents (arbitrarily defined as a concentration, C, which exceeds a mass fraction of 0.1). The peak identification problem becomes even more problematic for constituents present at minor (0.01< or =C< or =0.1) and trace (C<0.01) levels. "Problem elements" subject to misidentification as major constituents are even more vulnerable to misidentification when present at low concentrations in the minor and trace ranges. Additional misidentifications attributed to trace elements include minor X-ray family members associated with major constituents but not assigned properly, escape and coincidence peaks associated with major constituents, and false peaks owing to chance groupings of counts in spectra with poor counting statistics. A strategy for robust identification of minor and trace elements can be based on application of automatic peak identification with careful inspection of the results followed by multiple linear least-squares peak fitting with complete peak references to systematically remove each identified major element from the spectrum before attempting to assign remaining peaks to minor and trace constituents.

SELECTION OF CITATIONS
SEARCH DETAIL
...