Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 775, 2018.
Article in English | MEDLINE | ID: mdl-29755455

ABSTRACT

The potent proinflammatory cytokine interleukin (IL)-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (sh)RNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative) requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a) have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.


Subject(s)
Gene Expression Regulation/immunology , Gene Regulatory Networks/immunology , Interleukin-1/immunology , Nuclear Proteins/immunology , Animals , Cells, Cultured , Fibroblasts/immunology , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Gene Regulatory Networks/genetics , Interleukin-1/genetics , Mice , Nuclear Proteins/genetics , RNA Interference
3.
Mol Cell ; 62(6): 943-957, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27315556

ABSTRACT

Signals and posttranslational modifications regulating the decapping step in mRNA degradation pathways are poorly defined. In this study we reveal the importance of K63-linked ubiquitylation for the assembly of decapping factors, P-body formation, and constitutive decay of instable mRNAs encoding mediators of inflammation by various experimental approaches. K63-branched ubiquitin chains also regulate IL-1-inducible phosphorylation of the P-body component DCP1a. The E3 ligase TRAF6 binds to DCP1a and indirectly regulates DCP1a phosphorylation, expression of decapping factors, and gene-specific mRNA decay. Mutation of six C-terminal lysines of DCP1a suppresses decapping activity and impairs the interaction with the mRNA decay factors DCP2, EDC4, and XRN1, but not EDC3, thus remodeling P-body architecture. The usage of ubiquitin chains for the proper assembly and function of the decay-competent mammalian decapping complex suggests an additional layer of control to allow a coordinated function of decapping activities and mRNA metabolism in higher eukaryotes.


Subject(s)
Endoribonucleases/metabolism , Lysine/metabolism , RNA Caps/metabolism , RNA Stability , RNA, Messenger/metabolism , TNF Receptor-Associated Factor 6/metabolism , Trans-Activators/metabolism , Ubiquitination , Animals , Cell Line, Tumor , Endoribonucleases/genetics , Exoribonucleases/metabolism , HEK293 Cells , Humans , Interleukin-1alpha/pharmacology , Intracellular Signaling Peptides and Proteins , Mice , Microtubule-Associated Proteins/metabolism , Mutation , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Proteins/metabolism , RNA Caps/genetics , RNA Stability/drug effects , RNA, Messenger/genetics , Receptors, Interleukin-1/agonists , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , TNF Receptor-Associated Factor 6/genetics , Time Factors , Trans-Activators/genetics , Transfection , Ubiquitination/drug effects
4.
Cell Rep ; 10(5): 726-739, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25660023

ABSTRACT

The inflammatory gene response requires activation of the protein kinase TAK1, but it is currently unknown how TAK1-derived signals coordinate transcriptional programs in the genome. We determined the genome-wide binding of the TAK1-controlled NF-κB subunit p65 in relation to active enhancers and promoters of transcribed genes by chromatin immunoprecipitation sequencing (ChIP-seq) experiments. Out of 35,000 active enhancer regions, 410 H3K4me1-positive enhancers show interleukin 1 (IL-1)-induced H3K27ac and p65 binding. Inhibition of TAK1 or IKK2 or depletion of p65 blocked inducible enhancer activation and gene expression. As exemplified by the CXC chemokine cluster located on chromosome 4, the TAK1-p65 pathway also regulates the recruitment kinetics of the histone acetyltransferase CBP, of NF-κB p50, and of AP-1 transcription factors to both promoters and enhancers. This study provides a high-resolution view of epigenetic changes occurring during the IL-1 response and allows the genome-wide identification of a distinct class of inducible p65 NF-κB-dependent enhancers in epithelial cells.

5.
Nucleic Acids Res ; 41(1): 90-109, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23087373

ABSTRACT

Histone deacetylase (HDAC) 3, as a cofactor in co-repressor complexes containing silencing mediator for retinoid or thyroid-hormone receptors (SMRT) and nuclear receptor co-repressor (N-CoR), has been shown to repress gene transcription in a variety of contexts. Here, we reveal a novel role for HDAC3 as a positive regulator of IL-1-induced gene expression. Various experimental approaches involving RNAi-mediated knockdown, conditional gene deletion or small molecule inhibitors indicate a positive role of HDAC3 for transcription of the majority of IL-1-induced human or murine genes. This effect was independent from the gene regulatory effects mediated by the broad-spectrum HDAC inhibitor trichostatin A (TSA) and thus suggests IL-1-specific functions for HDAC3. The stimulatory function of HDAC3 for inflammatory gene expression involves a mechanism that uses binding to NF-κB p65 and its deacetylation at various lysines. NF-κB p65-deficient cells stably reconstituted to express acetylation mimicking forms of p65 (p65 K/Q) had largely lost their potential to stimulate IL-1-triggered gene expression, implying that the co-activating property of HDAC3 involves the removal of inhibitory NF-κB p65 acetylations at K122, 123, 314 and 315. These data describe a novel function for HDAC3 as a co-activator in inflammatory signaling pathways and help to explain the anti-inflammatory effects frequently observed for HDAC inhibitors in (pre)clinical use.


Subject(s)
Histone Deacetylases/physiology , Interleukin-1/pharmacology , Transcription Factor RelA/metabolism , Acetylation , Animals , Cell Line , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Down-Regulation , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Interleukin-8/genetics , Interleukin-8/metabolism , Mice , NF-kappa B/metabolism , Phosphorylation , RNA Polymerase II/metabolism , Signal Transduction , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...