Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 27(7): 1154-69, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26842893

ABSTRACT

In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation.


Subject(s)
Chromatin Assembly and Disassembly , Histones , Nucleosomes/metabolism , Ribonucleases , Ribonucleoproteins , Chromosomal Proteins, Non-Histone , Epigenesis, Genetic , Humans
2.
Cell Rep ; 9(6): 2263-78, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25497088

ABSTRACT

Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.


Subject(s)
Herpesvirus 1, Human/physiology , Telomere/virology , Virus Replication , Cell Line , Chromosome Aberrations , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Herpesvirus 1, Human/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Proteolysis , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Repetitive Sequences, Nucleic Acid , Serine Proteases/genetics , Serine Proteases/metabolism , Shelterin Complex/metabolism , Telomere/chemistry , Telomere/genetics , Telomere-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
3.
J Cell Physiol ; 229(3): 259-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23929405

ABSTRACT

For a gene to be expressed, the functions of multiple molecular machines must be coordinated at the site of transcription. To understand the role of nuclear organization in transcription, it is necessary to visualize the dynamic interactions of regulatory factors with chromatin and RNA. It is currently possible to localize individual transcription sites in single living mammalian cells by engineering reporter gene constructs to include sequence elements which permit the visualization of nucleic acids in vivo. Upon stable integration, these transgenes form chromatinized arrays, which can be imaged during activation to obtain high-resolution quantitative information about transcriptional dynamics. Modeling can suggest new hypotheses about gene regulation, which can be tested both in the single-cell imaging system and at endogenous genes. This gene-specific imaging strategy has the potential to reveal regulatory mechanisms, which would be difficult to imagine outside of single living cells.


Subject(s)
Cell Nucleus/metabolism , Cell Tracking/methods , Chromatin/metabolism , DNA/metabolism , Microscopy, Fluorescence , RNA/biosynthesis , Transcription, Genetic , Animals , Cells, Cultured , Chromatin Assembly and Disassembly , Genes, Reporter , Humans , Kinetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Transfection
4.
Epigenetics ; 8(10): 1101-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23949383

ABSTRACT

In eukaryotic organisms, histone posttranslational modifications (PTMs) are indispensable for their role in maintaining cellular physiology, often through their mediation of chromatin-related processes such as transcription. Targeted investigations of this ever expanding network of chemical moieties continue to reveal genetic, biochemical, and cellular nuances of this complex landscape. In this study, we present our findings on a novel class of histone PTMs: Serine, Threonine, and Tyrosine O-acetylation. We have combined highly sensitive nano-LC-MS/MS experiments and immunodetection assays to identify and validate these unique marks found only on histone H3. Mass spectrometry experiments have determined that several of these O-acetylation marks are conserved in many species, ranging from yeast to human. Additionally, our investigations reveal that histone H3 serine 10 acetylation (H3S10ac) is potentially linked to cell cycle progression and cellular pluripotency. Here, we provide a glimpse into the functional implications of this H3-specific histone mark, which may be of high value for further studies of chromatin.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Serine/metabolism , Acetylation , Animals , Cell Cycle , Chromatography, Liquid , Drosophila/metabolism , Embryonic Stem Cells/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Pluripotent Stem Cells/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Species Specificity , Tandem Mass Spectrometry , Tetrahymena thermophila/metabolism
5.
J Biol Chem ; 288(27): 19882-99, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23689370

ABSTRACT

Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.3 into nucleosomes is highly conserved and occurs at both euchromatin and heterochromatin. However, neither the mechanism of H3.3 recruitment nor its essential function is well understood. Several different chaperones regulate H3.3 assembly at distinct sites. The H3.3 chaperone, Daxx, and the chromatin-remodeling factor, ATRX, are required for H3.3 incorporation and heterochromatic silencing at telomeres, pericentromeres, and the cytomegalovirus (CMV) promoter. By evaluating H3.3 dynamics at a CMV promoter-regulated transcription site in a genetic background in which RI chromatin assembly is blocked, we have been able to decipher the regulatory events upstream of RI nucleosomal deposition. We find that at the activated transcription site, H3.3 accumulates with sense and antisense RNA, suggesting that it is recruited through an RNA-mediated mechanism. Sense and antisense transcription also increases after H3.3 knockdown, suggesting that the RNA signal is amplified when chromatin assembly is blocked and attenuated by nucleosomal deposition. Additionally, we find that H3.3 is still recruited after Daxx knockdown, supporting a chaperone-independent recruitment mechanism. Sequences in the H3.3 N-terminal tail and αN helix mediate both its recruitment to RNA at the activated transcription site and its interaction with double-stranded RNA in vitro. Interestingly, the H3.3 gain-of-function pediatric glioblastoma mutations, G34R and K27M, differentially affect H3.3 affinity in these assays, suggesting that disruption of an RNA-mediated regulatory event could drive malignant transformation.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Cytomegalovirus/metabolism , Histones/metabolism , Promoter Regions, Genetic/physiology , RNA, Viral/biosynthesis , Transcription, Genetic/physiology , Cell Line , Cytomegalovirus/genetics , Histones/genetics , Humans , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Structure, Secondary , RNA, Viral/genetics
6.
Mol Biol Cell ; 24(9): 1454-68, 2013 May.
Article in English | MEDLINE | ID: mdl-23485562

ABSTRACT

Promyelocytic leukemia nuclear bodies (PML-NBs)/nuclear domain 10s (ND10s) are nuclear structures that contain many transcriptional and chromatin regulatory factors. One of these, Sp100, is expressed from a single-copy gene and spliced into four isoforms (A, B, C, and HMG), which differentially regulate transcription. Here we evaluate Sp100 function in single cells using an inducible cytomegalovirus-promoter-regulated transgene, visualized as a chromatinized transcription site. Sp100A is the isoform most strongly recruited to the transgene array, and it significantly increases chromatin decondensation. However, Sp100A cannot overcome Daxx- and α-thalassemia mental retardation, X-linked (ATRX)-mediated transcriptional repression, which indicates that PML-NB/ND10 factors function within a regulatory hierarchy. Sp100A increases and Sp100B, which contains a SAND domain, decreases acetyl-lysine regulatory factor levels at activated sites, suggesting that Sp100 isoforms differentially regulate transcription by modulating lysine acetylation. In contrast to Daxx, ATRX, and PML, Sp100 is recruited to activated arrays in cells expressing the herpes simplex virus type 1 E3 ubiquitin ligase, ICP0, which degrades all Sp100 isoforms except unsumoylated Sp100A. The recruitment Sp100A(K297R), which cannot be sumoylated, further suggests that sumoylation plays an important role in regulating Sp100 isoform levels at transcription sites. This study provides insight into the ways in which viruses may modulate Sp100 to promote their replication cycles.


Subject(s)
Antigens, Nuclear/metabolism , Autoantigens/metabolism , Chromatin Assembly and Disassembly , Cytomegalovirus/physiology , Promoter Regions, Genetic , Acetylation , Adaptor Proteins, Signal Transducing/metabolism , Co-Repressor Proteins , DNA Helicases/metabolism , Epigenesis, Genetic , HeLa Cells , Humans , Molecular Chaperones , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein , Protein Isoforms/metabolism , Protein Transport , Proteolysis , Sumoylation , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Virus Latency , X-linked Nuclear Protein
7.
J Cell Sci ; 125(Pt 22): 5489-501, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22976303

ABSTRACT

Histone H3.3 is a constitutively expressed H3 variant implicated in the epigenetic inheritance of chromatin structures. Recently, the PML-nuclear body (PML-NB)/Nuclear Domain 10 (ND10) proteins, Daxx and ATRX, were found to regulate replication-independent histone H3.3 chromatin assembly at telomeres and pericentric heterochromatin. As it is not completely understood how PML-NBs/ND10s regulate transcription and resistance to viral infection, we have used a CMV-promoter-regulated inducible transgene array, at which Daxx and ATRX are enriched, to delineate the mechanisms through which they regulate transcription. When integrated into HeLa cells, which express both Daxx and ATRX, the array is refractory to activation. However, transcription can be induced when ICP0, the HSV-1 E3 ubiquitin ligase required to reverse latency, is expressed. As ATRX and Daxx are depleted from the activated array in ICP0-expressing HeLa cells, this suggests that they are required to maintain a repressed chromatin environment. As histone H3.3 is strongly recruited to the ICP0-activated array but does not co-localize with the DNA, this also suggests that chromatin assembly is blocked during activation. The conclusion that the Daxx and ATRX pathway is required for transcriptional repression and chromatin assembly at this site is further supported by the finding that an array integrated into the ATRX-negative U2OS cell line can be robustly activated and that histone H3.3 is similarly recruited and unincorporated into the chromatin. Therefore, this study has important implications for understanding gene silencing, viral latency and PML-NB/ND10 function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Single-Cell Analysis/methods , Transcription, Genetic , Cell Line, Tumor , Chromatin/metabolism , Co-Repressor Proteins , Cytomegalovirus/genetics , DNA Helicases/chemistry , HeLa Cells , Histones/metabolism , Humans , Molecular Chaperones , Nuclear Proteins/chemistry , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary , Transcriptional Activation/genetics , Transgenes , X-linked Nuclear Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...