Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1394, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914633

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Breast Neoplasms , Humans , Female , Xenograft Model Antitumor Assays , Cell Line, Tumor , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Receptor, ErbB-2/metabolism , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy
2.
Nat Commun ; 9(1): 3049, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076299

ABSTRACT

Engineering T cells with chimeric antigen receptors (CARs) is an effective method for directing T cells to attack tumors, but may cause adverse side effects such as the potentially lethal cytokine release syndrome. Here the authors show that the T cell antigen coupler (TAC), a chimeric receptor that co-opts the endogenous TCR, induces more efficient anti-tumor responses and reduced toxicity when compared with past-generation CARs. TAC-engineered T cells induce robust and antigen-specific cytokine production and cytotoxicity in vitro, and strong anti-tumor activity in a variety of xenograft models including solid and liquid tumors. In a solid tumor model, TAC-T cells outperform CD28-based CAR-T cells with increased anti-tumor efficacy, reduced toxicity, and faster tumor infiltration. Intratumoral TAC-T cells are enriched for Ki-67+ CD8+ T cells, demonstrating local expansion. These results indicate that TAC-T cells may have a superior therapeutic index relative to CAR-T cells.


Subject(s)
Receptors, Antigen/immunology , Receptors, Chimeric Antigen/immunology , Recombinant Proteins/immunology , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , CD28 Antigens/immunology , Cell Line, Tumor , Cytokines/blood , Cytokines/metabolism , Cytotoxicity, Immunologic , Female , Genetic Engineering , HEK293 Cells , Humans , Immunotherapy, Adoptive/methods , Lentivirus/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred NOD , Protein Engineering , Receptor, ErbB-2/immunology , Receptors, Antigen/genetics , Receptors, Chimeric Antigen/genetics , Single-Domain Antibodies , T-Cell Antigen Receptor Specificity/genetics , T-Lymphocytes, Cytotoxic/immunology , Vision, Ocular , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...