Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
PLoS One ; 19(4): e0301964, 2024.
Article in English | MEDLINE | ID: mdl-38630783

ABSTRACT

The neuronal differences contributing to the etiology of autism spectrum disorder (ASD) are still not well defined. Previous studies have suggested that myelin and axons are disrupted during development in ASD. By combining structural and diffusion MRI techniques, myelin and axons can be assessed using extracellular water, aggregate g-ratio, and a new approach to calculating axonal conduction velocity termed aggregate conduction velocity, which is related to the capacity of the axon to carry information. In this study, several innovative cellular microstructural methods, as measured from magnetic resonance imaging (MRI), are combined to characterize differences between ASD and typically developing adolescent participants in a large cohort. We first examine the relationship between each metric, including microstructural measurements of axonal and intracellular diffusion and the T1w/T2w ratio. We then demonstrate the sensitivity of these metrics by characterizing differences between ASD and neurotypical participants, finding widespread increases in extracellular water in the cortex and decreases in aggregate g-ratio and aggregate conduction velocity throughout the cortex, subcortex, and white matter skeleton. We finally provide evidence that these microstructural differences are associated with higher scores on the Social Communication Questionnaire (SCQ) a commonly used diagnostic tool to assess ASD. This study is the first to reveal that ASD involves MRI-measurable in vivo differences of myelin and axonal development with implications for neuronal and behavioral function. We also introduce a novel formulation for calculating aggregate conduction velocity, that is highly sensitive to these changes. We conclude that ASD may be characterized by otherwise intact structural connectivity but that functional connectivity may be attenuated by network properties affecting neural transmission speed. This effect may explain the putative reliance on local connectivity in contrast to more distal connectivity observed in ASD.


Subject(s)
Autism Spectrum Disorder , White Matter , Adolescent , Humans , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , White Matter/pathology , Cerebral Cortex , Brain/pathology
2.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37546913

ABSTRACT

The neuronal differences contributing to the etiology of autism spectrum disorder (ASD) are still not well defined. Previous studies have suggested that myelin and axons are disrupted during development in ASD. By combining structural and diffusion MRI techniques, myelin and axons can be assessed using extracellular water, aggregate g-ratio, and a novel metric termed aggregate conduction velocity, which is related to the capacity of the axon to carry information. In this study, several innovative cellular microstructural methods, as measured from magnetic resonance imaging (MRI), are combined to characterize differences between ASD and typically developing adolescent participants in a large cohort. We first examine the relationship between each metric, including microstructural measurements of axonal and intracellular diffusion and the T1w/T2w ratio. We then demonstrate the sensitivity of these metrics by characterizing differences between ASD and neurotypical participants, finding widespread increases in extracellular water in the cortex and decreases in aggregate g-ratio and aggregate conduction velocity throughout the cortex, subcortex, and white matter skeleton. We finally provide evidence that these microstructural differences are associated with higher scores on the Social Communication Questionnaire (SCQ) a commonly used diagnostic tool to assess ASD. This study is the first to reveal that ASD involves MRI-measurable in vivo differences of myelin and axonal development with implications for neuronal and behavioral function. We also introduce a novel neuroimaging metric, aggregate conduction velocity, that is highly sensitive to these changes. We conclude that ASD may be characterized by otherwise intact structural connectivity but that functional connectivity may be attenuated by network properties affecting neural transmission speed. This effect may explain the putative reliance on local connectivity in contrast to more distal connectivity observed in ASD.

3.
PNAS Nexus ; 2(12): pgad407, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111824

ABSTRACT

As public mass shootings continue to plague the United States, a growing scholarly literature seeks to understand the political effects of these tragic events. This literature, however, focuses on public opinion or turnout and vote choice, leaving open to question whether or not public mass shootings affect a range of other important actions citizens may take to engage with gun policy. Leveraging the as-good-as random timing of high-publicity public mass shootings over the past decade and an immense array of publicly available and proprietary data, we demonstrate that these events consistently cause surges in public engagement with gun policy-including internet searches, streaming documentaries, discussion on social media, signing petitions, and donating to political action committees. Importantly, we document the behaviors where shootings induce polarizing upswings in engagement and those where upswings skew toward gun control. Finally, we demonstrate that low-publicity shootings largely exert little-to-no effect on our outcomes.

4.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964373

ABSTRACT

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Cross-Sectional Studies , Magnetic Resonance Imaging , Cerebellum , Brain
5.
Cells ; 12(17)2023 08 22.
Article in English | MEDLINE | ID: mdl-37681861

ABSTRACT

Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.


Subject(s)
Brain Concussion , Humans , Athletes , Central Nervous System , Inflammation , Macrophage Activation
6.
Dev Cogn Neurosci ; 63: 101301, 2023 10.
Article in English | MEDLINE | ID: mdl-37717292

ABSTRACT

Puberty is a key event in adolescent development that involves significant, hormone-driven changes to many aspects of physiology including the brain. Understanding how the brain responds during this time period is important for evaluating neuronal developments that affect mental health throughout adolescence and the adult lifespan. This study examines diffusion MRI scans from the cross-sectional ABCD Study baseline cohort, a large multi-site study containing thousands of participants, to describe the relationship between pubertal development and brain microstructure. Using advanced, 3-tissue constrained spherical deconvolution methods, this study is able to describe multiple tissue compartments beyond only white matter (WM) axonal qualities. After controlling for age, sex, brain volume, subject handedness, scanning site, and sibling relationships, we observe a positive relationship between an isotropic, intracellular diffusion signal fraction and pubertal development across a majority of regions of interest (ROIs) in the WM skeleton. We also observe regional effects from an intracellular anisotropic signal fraction compartment and extracellular isotropic free water-like compartment in several ROIs. This cross-sectional work suggests that changes in pubertal status are associated with a complex response from brain tissue that cannot be completely described by traditional methods focusing only on WM axonal properties.


Subject(s)
White Matter , Adult , Adolescent , Humans , Cross-Sectional Studies , Brain , Diffusion Magnetic Resonance Imaging/methods , Puberty/physiology
8.
Front Neurol ; 14: 1127708, 2023.
Article in English | MEDLINE | ID: mdl-37034078

ABSTRACT

Introduction: In concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation. Methods: Eight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3. Results: For Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3. Discussion: Our study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.

9.
Transl Psychiatry ; 13(1): 91, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914631

ABSTRACT

Functional connectivity between the amygdala and the medial prefrontal cortex (mPFC) has been identified as a neural substrate of emotion regulation that undergoes changes throughout development, with a mature profile typically emerging at 10 years of age. Maternal bonding in childhood has been shown to buffer amygdala reactivity and to influence the trajectory of amygdala-mPFC coupling. The oxytocinergic system is critical in the development of social behavior and maternal bonding. Early-life parental care influences the methylation status of the oxytocin receptor (OXTRm) in animal models and humans, and higher OXTRm is associated with lower amygdala-PFC functional connectivity in adults. Using a neuroimaging-epigenetic approach, we investigated saliva-derived OXTRm as a biological marker of structural and functional connectivity maturation in 57 typically developing children (P < 0.05). We utilized seed-based connectivity analysis during a novel abstract movie paradigm and find that higher levels of OXTRm are associated with a more adult-like functional connectivity profile. Concurrently, more adult-like functional connectivity was associated with higher reported self-control and more diffusion streamlines between the amygdala and mPFC. OXTRm mediates the association between structural and functional connectivity with higher levels of OXTRm being associated with more streamlines. Lastly, we also find that lower OXTRm blunts the association between amygdala-mPFC connectivity and future internalizing behaviors in early adolescence. These findings implicate OXTRm as a biological marker at the interface of the social environment and amygdala-mPFC connectivity in emotional and behavioral regulation. Ultimately, identification of neurobiological markers may lead to earlier detection of children at risk for socio-emotional dysfunction.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Adult , Child , Adolescent , Animals , Humans , Amygdala/diagnostic imaging , Amygdala/physiology , Emotions/physiology , Prefrontal Cortex/physiology , Epigenesis, Genetic , Receptors, Oxytocin/genetics , Neural Pathways
10.
Mov Disord ; 38(3): 474-479, 2023 03.
Article in English | MEDLINE | ID: mdl-36598142

ABSTRACT

BACKGROUND: Cholinergic nucleus 4 (Ch4) degeneration is associated with cognitive impairment in Parkinson's disease and dementia with Lewy bodies, but it is unknown if Ch4 degeneration is also present in isolated rapid eye movement sleep behavior disorder (iRBD). OBJECTIVE: The aim was to determine if there is evidence of Ch4 degeneration in patients with iRBD and if it is associated with cognitive impairment. METHODS: We analyzed the clinical and neuropsychological data of 35 iRBD patients and 35 age- and sex-matched healthy controls. Regional gray matter density (GMD) was calculated for Ch4 using probabilistic maps applied to brain magnetic resonance imaging (MRI). RESULTS: Ch4 GMD was significantly lower in the iRBD group compared to controls (0.417 vs. 0.441, P = 0.02). Ch4 GMD was also found to be a significant predictor of letter number sequencing (ß-coefficient = 58.31, P = 0.026, 95% confidence interval [7.47, 109.15]), a measure of working memory. CONCLUSIONS: iRBD is associated with Ch4 degeneration, and Ch4 degeneration in iRBD is associated with impairment in working memory. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Basal Nucleus of Meynert , Cognitive Dysfunction , REM Sleep Behavior Disorder , Aged , Female , Humans , Male , Basal Nucleus of Meynert/diagnostic imaging , Basal Nucleus of Meynert/pathology , Cognitive Dysfunction/complications , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging , Olfactory Bulb/diagnostic imaging , Olfactory Bulb/pathology , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/pathology , Neural Pathways
11.
Front Robot AI ; 8: 720319, 2021.
Article in English | MEDLINE | ID: mdl-35155586

ABSTRACT

As assistive robotics has expanded to many task domains, comparing assistive strategies among the varieties of research becomes increasingly difficult. To begin to unify the disparate domains into a more general theory of assistance, we present a definition of assistance, a survey of existing work, and three key design axes that occur in many domains and benefit from the examination of assistance as a whole. We first define an assistance perspective that focuses on understanding a robot that is in control of its actions but subordinate to a user's goals. Next, we use this perspective to explore design axes that arise from the problem of assistance more generally and explore how these axes have comparable trade-offs across many domains. We investigate how the assistive robot handles other people in the interaction, how the robot design can operate in a variety of action spaces to enact similar goals, and how assistive robots can vary the timing of their actions relative to the user's behavior. While these axes are by no means comprehensive, we propose them as useful tools for unifying assistance research across domains and as examples of how taking a broader perspective on assistance enables more cross-domain theorizing about assistance.

12.
Ann Biomed Eng ; 48(12): 2751-2762, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32929556

ABSTRACT

In this study, twenty volunteers were subjected to three, non-injurious lateral head impacts delivered by a 3.7 kg padded impactor at 2 m/s at varying levels of muscle activation (passive, co-contraction, and unilateral contraction). Electromyography was used to quantify muscle activation conditions, and resulting head kinematics were recorded using a custom-fit instrumented mouthpiece. A multi-modal battery of diagnostic tests (evaluated using neurocognitive, balance, symptomatic, and neuroimaging based assessments) was performed on each subject pre- and post-impact. The passive muscle condition resulted in the largest resultant head linear acceleration (12.1 ± 1.8 g) and angular velocity (7.3 ± 0.5 rad/s). Compared to the passive activation, increasing muscle activation decreased both peak resultant linear acceleration and angular velocity in the co-contracted (12.1 ± 1.5 g, 6.8 ± 0.7 rad/s) case and significantly decreased in the unilateral contraction (10.7 ± 1.7 g, 6.5 ± 0.7 rad/s) case. The duration of angular velocity was decreased with an increase in neck muscle activation. No diagnostic metric showed a statistically or clinically significant alteration between baseline and post-impact assessments, confirming these impacts were non-injurious. This study demonstrated that isometric neck muscle activation prior to impact can reduce resulting head kinematics. This study also provides the data necessary to validate computational models of head impact.


Subject(s)
Head/physiology , Neck Muscles/physiology , Acceleration , Adolescent , Adult , Biomechanical Phenomena , Brain/diagnostic imaging , Electromyography , Head/anatomy & histology , Humans , Magnetic Resonance Imaging , Male , Neck/anatomy & histology , Neuropsychological Tests , Postural Balance , Young Adult
13.
Magn Reson Med ; 84(4): 2161-2173, 2020 10.
Article in English | MEDLINE | ID: mdl-32112479

ABSTRACT

PURPOSE: Several recent studies have used a three-tissue constrained spherical deconvolution pipeline to obtain quantitative metrics of brain tissue microstructure from diffusion-weighted MRI data. The three tissue compartments, consisting of white matter, gray matter, and CSF-like (free water) signals, are potentially useful in the evaluation of brain microstructure in a range of pathologies. However, the reliability and long-term stability of these metrics have not yet been evaluated. METHODS: This study examined estimates of whole-brain microstructure for the three tissue compartments, in three separate test-retest cohorts. Each cohort had different lengths of time between baseline and retest, ranging from within the same scanning session in the shortest interval to 3 months in the longest interval. Each cohort was also collected with different acquisition parameters. RESULTS: The CSF-like compartment displayed the greatest reliability across all cohorts, with intraclass correlation coefficient (ICC) values being above 0.95 in each cohort. White matter-like and gray matter-like compartments both demonstrated very high reliability in the immediate cohort (both ICC > 0.90); however, this declined in the 3-month interval cohort to both compartments having ICC > 0.80. Regional CSF-like signal fraction was examined in bilateral hippocampus and had an ICC > 0.80 in each cohort. CONCLUSION: The three-tissue constrained spherical deconvolution techniques provide reliable and stable estimates of tissue-microstructure composition, up to 3 months longitudinally in a control population. This forms an important basis for further investigations using three-tissue constrained spherical deconvolution techniques to track changes in microstructure across a variety of brain pathologies.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Reproducibility of Results , White Matter/diagnostic imaging
14.
Nat Hum Behav ; 4(5): 481-488, 2020 05.
Article in English | MEDLINE | ID: mdl-32094509

ABSTRACT

Can exposure to discernible economic benefits associated with the presence of a high-socioeconomic status immigrant group reduce xenophobic and antiforeigner attitudes? We explore this question using the case of Chinese internationals in the United States and an exogenous influx of foreign capital associated with their presence. Using a difference-in-differences design with panel data, along with analyses of pooled cross-sectional data, we find that immigration attitudes, as well as views towards China, became more positive over time among Americans residing in locales whose economies were stimulated by Chinese foreign investments. Our findings have implications for research on public attitudes towards immigration in an era of growing flows of high-socioeconomic status immigrants to the United States and other immigrant-receiving nations.


Subject(s)
Xenophobia/economics , Attitude , China/ethnology , Emigration and Immigration , Housing/economics , Humans , Models, Economic , Socioeconomic Factors , United States , Xenophobia/psychology
15.
Radiology ; 283(3): 854-861, 2017 06.
Article in English | MEDLINE | ID: mdl-27918708

ABSTRACT

Purpose To describe a nonlinear finite element analysis method by using magnetic resonance (MR) images for the assessment of the mechanical competence of the hip and to demonstrate the reproducibility of the tool. Materials and Methods This prospective study received institutional review board approval and fully complied with HIPAA regulations for patient data. Written informed consent was obtained from all subjects. A nonlinear finite element analysis method was developed to estimate mechanical parameters that relate to hip fracture resistance by using MR images. Twenty-three women (mean age ± standard deviation, 61.7 years ± 13.8) were recruited from a single osteoporosis center. To thoroughly assess the reproducibility of the finite element method, three separate analyses were performed: a test-retest reproducibility analysis, where each of the first 13 subjects underwent MR imaging on three separate occasions to determine longitudinal variability, and an intra- and interoperator reproducibility analysis, where a single examination was performed in each of the next 10 subjects and four operators independently performed the analysis two times in each of the subjects. Reproducibility of parameters that reflect fracture resistance was assessed by using the intraclass correlation coefficient and the coefficient of variation. Results For test-retest reproducibility analysis and inter- and intraoperator analyses for proximal femur stiffness, yield strain, yield load, ultimate strain, ultimate load, resilience, and toughness in both stance and sideways-fall loading configurations each had an individual median coefficient of variation of less than 10%. Additionally, all measures had an intraclass correlation coefficient higher than 0.99. Conclusion This experiment demonstrates that the finite element analysis model can consistently and reliably provide fracture risk information on correctly segmented bone images. © RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Finite Element Analysis , Hip Fractures/diagnostic imaging , Magnetic Resonance Imaging , Biomechanical Phenomena , Female , Humans , Middle Aged , Prospective Studies , Reproducibility of Results
16.
Acad Radiol ; 24(3): 321-327, 2017 03.
Article in English | MEDLINE | ID: mdl-27989444

ABSTRACT

RATIONALE AND OBJECTIVES: Severe progressive multifocal heterotopic ossification (HO) is a rare occurrence seen predominantly in patients who have fibrodysplasia ossificans progressiva (FOP) and is difficult to quantitate owing to patient-, disease-, logistical-, and radiation-related issues. The purpose of this study was to develop and validate a scoring system based on plain radiographs for quantitative assessment of HO lesions in patients with FOP. MATERIALS AND METHODS: Institutional review board approval was obtained from the University of Pennsylvania, and all data comply with Health Insurance Portability and Accountability Act regulations. The University of Pennsylvania Institutional Animal Care and Use Committee approved the use of mice in this study. First, we used a mouse model of FOP-like HO to validate a semiquantitative analog scale for estimating relative heterotopic bone volume. Second, we used this validated scale to estimate the relative amount of HO from a retrospective analysis of plain radiographs from 63 patients with classic FOP. Finally, the scale was applied to a retrospective analysis of computed tomographic images from three patients with FOP. RESULTS: In the FOP-mouse model, the observed rating on the analog scale is highly correlated to heterotopic bone volumes measured by microcomputed tomography (R2 = 0.89). The scoring system that was applied to radiographs of patients with FOP captured the clinical range of HO typically present at all axial and appendicular sites. Analysis of computed tomographic scans of patients with FOP found that observed radiograph ratings were highly correlated with HO volume (R2 = 0.80). CONCLUSIONS: The scoring system described here could enable practical, quantitative assessment of HO in clinical trials to evaluate new treatment modalities, especially for FOP. The development of the six-point analog scale described here provides and validates a much-needed, reproducible, and quantifiable method for describing and assessing HO in patients with FOP. This scale has the potential to be a key descriptor that can inform patients with FOP and clinicians about disease progression and response of HO lesions to interventions and treatments.


Subject(s)
Myositis Ossificans/diagnostic imaging , Ossification, Heterotopic/diagnostic imaging , X-Ray Microtomography/methods , Adolescent , Animals , Bone and Bones/diagnostic imaging , Child , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Myositis Ossificans/complications , Ossification, Heterotopic/etiology , Reproducibility of Results , Retrospective Studies
17.
Am J Surg ; 212(6): 1090-1095, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27889267

ABSTRACT

BACKGROUND: Payment models aimed at improving quality and curbing costs are being deployed, and hospitals are evaluating complications more closely. To decrease complications, hospitals must first "attribute" them to a responsible party. Our study uses a rigorous approach to attribution in the trauma population. METHODS: Twelve months of complications were reviewed by a multidisciplinary panel. Physicians, patients, nursing, and the hospital were all incorporated into the model. A point system was developed for each complication. Fractional points were given when multiple parties were involved. RESULTS: One hundred twenty-five complications were analyzed. Complications were attributed as follows: 30% neurosurgery, 22% trauma surgery (100% using the traditional method), 17% orthopedic surgery, 14% nursing, 9.6% plastics, 3.8% hospital, 1.6% patient, 1.4% urology, and .6% vascular. CONCLUSIONS: Up to 78% of complications were incorrectly ascribed using the traditional method. Almost 20% of complications resulted from factors outside the physician's control. Before complications can be reduced, their most proximate cause must be identified. Surgeons should own these data and lead the effort to improve quality and decrease complications.


Subject(s)
Postoperative Complications , Quality Improvement , Wounds and Injuries/surgery , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...