Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 14(46): 17297-17314, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36374249

ABSTRACT

An important aspect of immunotherapy is the ability of dendritic cells (DCs) to prime T cell immunity, an approach that has yielded promising results in some early phase clinical trials. However, novel approaches are required to improve DC therapeutic efficacy by enhancing their uptake of, and activation by, disease relevant antigens. The carbon nano-material graphene oxide (GO) may provide a unique way to deliver antigen to innate immune cells and modify their ability to initiate effective adaptive immune responses. We have assessed whether GO of various lateral sizes affects DC activation and function in vitro and in vivo, including their ability to take up, process and present the well-defined model antigen ovalbumin (OVA). We have found that GO flakes are internalised by DCs, while having minimal effect on their viability, activation phenotype or cytokine production. Although adsorption of OVA protein to either small or large GO flakes promoted its uptake into DCs, large GO interfered with OVA processing. In terms of modulation of DC function, delivery of OVA via small GO flakes significantly enhanced DC ability to induce proliferation of OVA-specific CD4+ T cells, promoting granzyme B secretion in vitro. On the other hand, delivery of OVA via large GO flakes augmented DC ability to induce proliferation of OVA-specific CD8+ T cells, and their production of IFN-γ and granzyme B. Together, these data demonstrate the capacity of GO of different lateral dimensions to act as a promising delivery platform for DC modulation of distinct facets of the adaptive immune response, information that could be exploited for future development of targeted immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Animals , Mice , Granzymes/metabolism , Ovalbumin , Antigens , Cytokines/metabolism , Mice, Inbred C57BL
2.
J Control Release ; 338: 330-340, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34418522

ABSTRACT

Although the use of graphene and 2-dimensional (2D) materials in biomedicine has been explored for over a decade now, there are still significant knowledge gaps regarding the fate of these materials upon interaction with living systems. Here, the pharmacokinetic profile of graphene oxide (GO) sheets of three different lateral dimensions was studied. The GO materials were functionalized with a PEGylated DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), a radiometal chelating agent for radioisotope attachment for single photon emission computed tomography (SPECT/CT) imaging. Our results revealed that GO materials with three distinct size distributions, large (l-GO-DOTA), small (s-GO-DOTA) and ultra-small (us-GO-DOTA), were sequestered by the spleen and liver. Significant accumulation of the large material (l-GO-DOTA) in the lungs was also observed, unlike the other two materials. Interestingly, there was extensive urinary excretion of all three GO nanomaterials indicating that urinary excretion of these structures was not affected by lateral dimensions. Comparing with previous studies, we believe that the thickness of layered nanomaterials is the predominant factor that governs their excretion rather than lateral size. However, the rate of urinary excretion was affected by lateral size, with large GO excreting at slower rates. This study provides better understanding of 2D materials in vivo behaviour with varying structural features.


Subject(s)
Graphite , Nanostructures , Animals , Mice , Spleen , Tissue Distribution
3.
ACS Nano ; 14(8): 10168-10186, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32658456

ABSTRACT

Carbon nanomaterials, including 2D graphene-based materials, have shown promising applicability to drug delivery, tissue engineering, diagnostics, and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets were largely excreted via the kidneys; however, a small but significant portion of the material was sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM). This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin GO sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible.


Subject(s)
Graphite , Nanostructures , Animals , Spleen , Tissue Distribution
4.
Adv Sci (Weinh) ; 7(12): 1903200, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596109

ABSTRACT

Safety assessment of graphene-based materials (GBMs) including graphene oxide (GO) is essential for their safe use across many sectors of society. In particular, the link between specific material properties and biological effects needs to be further elucidated. Here, the effects of lateral dimensions of GO sheets in acute and chronic pulmonary responses after single intranasal instillation in mice are compared. Micrometer-sized GO induces stronger pulmonary inflammation than nanometer-sized GO, despite reduced translocation to the lungs. Genome-wide RNA sequencing also reveals distinct size-dependent effects of GO, in agreement with the histopathological results. Although large GO, but not the smallest GO, triggers the formation of granulomas that persists for up to 90 days, no pulmonary fibrosis is observed. These latter results can be partly explained by Raman imaging, which evidences the progressive biotransformation of GO into less graphitic structures. The findings demonstrate that lateral dimensions play a fundamental role in the pulmonary response to GO, and suggest that airborne exposure to micrometer-sized GO should be avoided in the production plant or applications, where aerosolized dispersions are likely to occur. These results are important toward the implementation of a safer-by-design approach for GBM products and applications, for the benefit of workers and end-users.

5.
Langmuir ; 35(41): 13318-13331, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31478662

ABSTRACT

Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2-4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L-AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L-AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal-NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal-NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.


Subject(s)
Gold/chemistry , Lab-On-A-Chip Devices , Liposomes/chemistry , Metal Nanoparticles/chemistry , Microfluidic Analytical Techniques
6.
Nano Lett ; 19(5): 2858-2870, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30983361

ABSTRACT

Synapses compute and transmit information to connect neural circuits and are at the basis of brain operations. Alterations in their function contribute to a vast range of neuropsychiatric and neurodegenerative disorders and synapse-based therapeutic intervention, such as selective inhibition of synaptic transmission, may significantly help against serious pathologies. Graphene is a two-dimensional nanomaterial largely exploited in multiple domains of science and technology, including biomedical applications. In hippocampal neurons in culture, small graphene oxide nanosheets (s-GO) selectively depress glutamatergic activity without altering cell viability. Glutamate is the main excitatory neurotransmitter in the central nervous system and growing evidence suggests its involvement in neuropsychiatric disorders. Here we demonstrate that s-GO directly targets the release of presynaptic vesicle. We propose that s-GO flakes reduce the availability of transmitter, via promoting its fast release and subsequent depletion, leading to a decline ofglutamatergic neurotransmission. We injected s-GO in the hippocampus in vivo, and 48 h after surgery ex vivo patch-clamp recordings from brain slices show a significant reduction in glutamatergic synaptic activity in respect to saline injections.


Subject(s)
Graphite/pharmacology , Nanostructures/chemistry , Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Animals , Animals, Newborn , Excitatory Amino Acid Agents/chemical synthesis , Excitatory Amino Acid Agents/chemistry , Excitatory Amino Acid Agents/pharmacology , Glutamic Acid/metabolism , Graphite/chemical synthesis , Graphite/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Nanostructures/therapeutic use , Neurodegenerative Diseases/physiopathology , Neurons/metabolism , Primary Cell Culture , Quantum Dots/chemistry , Rats , Rats, Wistar , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects
7.
Arch Toxicol ; 92(11): 3359-3379, 2018 11.
Article in English | MEDLINE | ID: mdl-30259072

ABSTRACT

Graphene oxide (GO) is an oxidised form of graphene that has attracted commercial interest in multiple applications, including inks, printed electronics and spray coatings, which all raise health concerns due to potential creation of inhalable aerosols. Although a number of studies have discussed the toxicity of GO sheets, the in vivo impact of their lateral dimensions is still not clear. Here, we compared the effects of large GO sheets (l-GO, 1-20 µm) with those of small GO sheets (s-GO, < 1 µm) in terms of mesothelial damage and peritoneal inflammation, after intraperitoneal (i.p.) injection in mice. To benchmark the outcomes, long and rigid multi-walled carbon nanotubes (MWCNTs) that were shown to be associated with asbestos-like pathogenicity on the mesothelium were also tested. Our aim was to assess whether lateral dimensions can be a predictor of inflammogenicity for GO sheets in a similar fashion as length is for MWCNTs. While long MWCNTs dispersed in 0.5% BSA induced a granulomatous response on the diaphragmatic mesothelium and immune cell recruitment to the peritoneal cavity, GO sheets dispersed under similar conditions did not cause any response, regardless of their lateral dimensions. We further interrogated whether tuning the surface reactivity of GO by testing different dispersions (5% dextrose instead of 0.5% BSA) may change the biological outcome. Although the change of dispersion did not alter the impact of GO on the mesothelium (i.e. no granuloma), we observed that, when dispersed in protein-free 5% dextrose solution, s-GO elicited a greater recruitment of monocytic cells to the peritoneal cavity than l-GO, or when dispersed in protein-containing solution. Such recruitment coincided with the greater ability of s-GO to interact in vivo with peritoneal macrophages and was associated with a greater surface reactivity in comparison to l-GO. In conclusion, large dimension was not a determining factor of the immunological impact of GO sheets after i.p. administration. For an equal dose, GO sheets with lateral dimensions similar to the length of long MWCNTs were less pathogenic than the MWCNTs. On the other hand, surface reactivity and the ability of some smaller GO sheets to interact more readily with immune cells seem to be key parameters that can be tuned to improve the safety profile of GO. In particular, the choice of dispersion modality, which affected these two parameters, was found to be of crucial importance in the assessment of GO impact in this model. Overall, these findings are essential for a better understanding of the parameters governing GO toxicity and inflammation, and the rational design of safe GO-based formulations for various applications, including biomedicine.


Subject(s)
Epithelium/drug effects , Graphite/toxicity , Inflammation/chemically induced , Macrophages, Peritoneal/drug effects , Animals , Female , Mice , Mice, Inbred C57BL , Nanotubes, Carbon/toxicity , Peritoneal Cavity , Tissue Distribution
8.
Nanoscale ; 10(3): 1180-1188, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29271441

ABSTRACT

Neutrophils were previously shown to digest oxidized carbon nanotubes through a myeloperoxidase (MPO)-dependent mechanism, and graphene oxide (GO) was found to undergo degradation when incubated with purified MPO, but there are no studies to date showing degradation of GO by neutrophils. Here we produced endotoxin-free GO by a modified Hummers' method and asked whether primary human neutrophils stimulated to produce neutrophil extracellular traps or activated to undergo degranulation are capable of digesting GO. Biodegradation was assessed using a range of techniques including Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and mass spectrometry. GO sheets of differing lateral dimensions were effectively degraded by neutrophils. As the degradation products could have toxicological implications, we also evaluated the impact of degraded GO on the bronchial epithelial cell line BEAS-2B. MPO-degraded GO was found to be non-cytotoxic and did not elicit any DNA damage. Taken together, these studies have shown that neutrophils can digest GO and that the biodegraded GO is non-toxic for human lung cells.


Subject(s)
Graphite/metabolism , Neutrophils/metabolism , Peroxidase/metabolism , Cell Line, Tumor , Epithelial Cells/drug effects , Extracellular Traps/metabolism , Humans , Microscopy, Confocal , Microscopy, Electron, Transmission , Mutagenicity Tests , Oxides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrum Analysis, Raman
9.
ACS Nano ; 12(2): 1373-1389, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29286639

ABSTRACT

The interest in graphene and its translation into commercial products has been expanding at a high pace. Based on previously described pulmonary safety concerns for carbon nanomaterials, there is a great need to define parameters guiding interactions between graphene-based materials and the pulmonary system. The aim of the present study was to determine the importance of two critical parameters: lateral dimensions of the material and coating with proteins in relation to each other and their pulmonary impact. Endotoxin-free materials with distinct lateral dimensions, s-GO (50-200 nm) and l-GO (5-15 µm), were produced and thoroughly characterized. Exploiting intrinsic fluorescence of graphene oxide (GO) and using confocal live-cell imaging, the behavior of the cells in response to the material was visualized in real time. Although BEAS-2B cells internalized GO efficiently, l-GO was linked to higher plasma membrane interactions correlated with elevated reactive oxygen species (ROS) levels, pro-inflammatory response, and greater cytotoxicity, in agreement with the oxidative stress paradigm. For both GO types, the presence of serum alleviated lipid peroxidation of plasma membrane and decreased intracellular ROS levels. However, protein coating was not enough to entirely mitigate toxicity and inflammatory response induced by l-GO. In vitro results were validated in vivo, as l-GO was more prone to induce pulmonary granulomatous response in mice compared to s-GO. In conclusion, the lateral dimension of GO played a more important role than serum protein coating in determining biological responses to the material. It was also demonstrated that time-lapse imaging of live cells interacting with label-free GO sheets can be used as a tool to assess GO-induced cytotoxicity.


Subject(s)
Graphite/chemistry , Animals , Cells, Cultured , Graphite/pharmacology , Humans , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism
10.
Nat Commun ; 8(1): 1109, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29061960

ABSTRACT

Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH2) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline.


Subject(s)
Graphite/pharmacology , Oxides/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Adult , Female , Flow Cytometry , Gene Expression Profiling , Humans , Male , Middle Aged , Single-Cell Analysis , T-Lymphocytes/cytology , Th1 Cells/immunology
11.
ACS Nano ; 10(12): 10753-10767, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27936585

ABSTRACT

Understanding how two-dimensional (2D) nanomaterials interact with the biological milieu is fundamental for their development toward biomedical applications. When thin, individualized graphene oxide (GO) sheets were administered intravenously in mice, extensive urinary excretion was observed, indicating rapid transit across the glomerular filtration barrier (GFB). A detailed analysis of kidney function, histopathology, and ultrastructure was performed, along with the in vitro responses of two highly specialized GFB cells (glomerular endothelial cells and podocytes) following exposure to GO. We investigated whether these cells preserved their unique barrier function at doses 100 times greater than the dose expected to reach the GFB in vivo. Both serum and urine analyses revealed that there was no impairment of kidney function up to 1 month after injection of GO at escalating doses. Histological examination suggested no damage to the glomerular and tubular regions of the kidneys. Ultrastructural analysis by transmission electron microscopy showed absence of damage, with no change in the size of podocyte slits, endothelial cell fenestra, or the glomerular basement membrane width. The endothelial and podocyte cell cultures regained their full barrier function after >48 h of GO exposure, and cellular uptake was significant in both cell types after 24 h. This study provided a previously unreported understanding of the interaction between thin GO sheets with different components of the GFB in vitro and in vivo to highlight that the glomerular excretion of significant amounts of GO did not induce any signs of acute nephrotoxicity or glomerular barrier dysfunction.


Subject(s)
Glomerular Basement Membrane/physiology , Graphite , Nanostructures , Animals , Endothelial Cells , Mice , Oxides , Podocytes
12.
PLoS One ; 11(11): e0166816, 2016.
Article in English | MEDLINE | ID: mdl-27880838

ABSTRACT

Nanomaterials may be contaminated with bacterial endotoxin during production and handling, which may confound toxicological testing of these materials, not least when assessing for immunotoxicity. In the present study, we evaluated the conventional Limulus amebocyte lysate (LAL) assay for endotoxin detection in graphene based material (GBM) samples, including graphene oxide (GO) and few-layered graphene (FLG). Our results showed that some GO samples interfered with various formats of the LAL assay. To overcome this problem, we developed a TNF-α expression test (TET) using primary human monocyte-derived macrophages incubated in the presence or absence of the endotoxin inhibitor, polymyxin B sulfate, and found that this assay, performed with non-cytotoxic doses of the GBM samples, enabled unequivocal detection of endotoxin with a sensitivity that is comparable to the LAL assay. FLG also triggered TNF-α production in the presence of the LPS inhibitor, pointing to an intrinsic pro-inflammatory effect. Finally, we present guidelines for the preparation of endotoxin-free GO, validated by using the TET.


Subject(s)
Biological Assay/methods , Endotoxins/analysis , Graphite/chemistry , Tumor Necrosis Factor-alpha/analysis , Cells, Cultured , Endotoxins/antagonists & inhibitors , Endotoxins/metabolism , Enzyme-Linked Immunosorbent Assay , Filaggrin Proteins , Guidelines as Topic , Humans , Limulus Test , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Oxides/chemistry , Polymyxin B/chemistry , Polymyxin B/metabolism
13.
Appl Opt ; 46(22): 4907-15, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17676094

ABSTRACT

The Microwave Limb Sounder on the Aura satellite has a radiometer at 2.5 THz to perform global mapping of OH in the atmosphere. The OH radiometer utilizes two Schottky-diode mixers pumped by an optically pumped THz gas laser local oscillator. The laser was first turned on in space on July 22, 2004, and has performed without issue for more than 30 months. The specifications, design, and modeling of this 2.5 THz laser local oscillator are presented here, along with some of the important design validation and test results.

SELECTION OF CITATIONS
SEARCH DETAIL
...