Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Organ Dyn ; 50(1): 100802, 2021.
Article in English | MEDLINE | ID: mdl-36536689

ABSTRACT

The emergence of COVID-19 has presented employees and employers new challenges as many employees and managers were forced to work in a remote environment for the first time. For many reasons, managing virtual teams is different than managing employees in a traditional face-to-face office environment. Although many managers have been learning how to lead their virtual teams over the last several months, we offer five steps for leaders to follow for how to maximize the effectiveness of a remote workplace. By taking specific actions and ensuring the organization has a culture to support their virtual workforce, leaders can improve the performance output and engagement of their teams. The five steps are: first establish and explain the new reality; second, establish and maintain a culture of trust; third, upgrade leadership communication tools and techniques to better inform virtual employees; fourth, encourage shared leadership among team members; and fifth, to create and periodically perform alignment audits to ensure virtual employees are aligned with the organization's cultural values including its commitment to mission. All these steps start with the realization that managing a team is going to be different when the members are dispersed, and new leadership strategies, communication routines and tools are required.

2.
Neuron ; 94(2): 278-293.e9, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28426964

ABSTRACT

Microglia play critical roles in brain development, homeostasis, and neurological disorders. Here, we report that human microglial-like cells (iMGLs) can be differentiated from iPSCs to study their function in neurological diseases, like Alzheimer's disease (AD). We find that iMGLs develop in vitro similarly to microglia in vivo, and whole-transcriptome analysis demonstrates that they are highly similar to cultured adult and fetal human microglia. Functional assessment of iMGLs reveals that they secrete cytokines in response to inflammatory stimuli, migrate and undergo calcium transients, and robustly phagocytose CNS substrates. iMGLs were used to examine the effects of Aß fibrils and brain-derived tau oligomers on AD-related gene expression and to interrogate mechanisms involved in synaptic pruning. Furthermore, iMGLs transplanted into transgenic mice and human brain organoids resemble microglia in vivo. Together, these findings demonstrate that iMGLs can be used to study microglial function, providing important new insight into human neurological disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Induced Pluripotent Stem Cells/cytology , Microglia/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Humans , Mice , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...