Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Phys ; 132(17): 174503, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36339744

ABSTRACT

We present high-resolution magnetic resonance imaging (MRI) at ultra-low field (ULF) with a proton Larmor frequency of around 120 kHz. The key element is a specially designed high-sensitivity sensing coil in the shape of a solenoid with a few millimeter gap between windings to decrease the proximity effect and, hence, increase the coil's quality ( Q ) factor and sensitivity. External noise is strongly suppressed by enclosing the sensing coil in a copper cylindrical shield, large enough not to negatively affect the coil's Q factor and sensitivity, measured to be 217 and 0.47 fT/Hz 1 / 2 , respectively. To enhance small polarization of proton spins at ULF, a strong pulsed 0.1 T prepolarization field is applied, making the signal-to-noise ratio (SNR) of ULF MRI sufficient for high-quality imaging in a short time. We demonstrate ULF MRI of a copper sulfate solution phantom with a resolution of 1 × 1 × 8.5 mm 3 and SNR of 10. The acquisition time is 6.3 min without averaging. The sensing coil size in the current realization can accommodate imaging objects of 9 cm in size, sufficient for hand, and it can be further increased for human head imaging in the future. Since the in-plane resolution of 1 × 1 mm 2 is typical in anatomical medical imaging, this ULF MRI method can be an alternative low-cost, rapid, portable method for anatomical medical imaging of the human body or animals. This ULF MRI method can supplement other MRI methods, especially when such methods are restricted due to high cost, portability requirement, imaging artifacts, and other factors.

2.
Nat Commun ; 10(1): 2245, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113943

ABSTRACT

Exotic spin-dependent interactions between fermions have recently attracted attention in relation to theories beyond the Standard Model. The exotic interactions can be mediated by hypothetical fundamental bosons which may explain several unsolved mysteries in physics. Here we expand this area of research by probing an exotic parity-odd spin- and velocity-dependent interaction between the axial-vector electron coupling and the vector nucleon coupling for polarized electrons. This experiment utilizes a high-sensitivity atomic magnetometer, based on an optically polarized vapor that is a source of polarized electrons, and a solid-state mass containing unpolarized nucleons. The atomic magnetometer can detect an effective magnetic field induced by the exotic interaction between unpolarized nucleons and polarized electrons. We set an experimental limit on the electron-nucleon coupling [Formula: see text] at the mediator boson mass below 10-4 eV, significantly improving the current limit by up to 17 orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...