Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 40(10): 3349-54, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16749704

ABSTRACT

Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.


Subject(s)
Hydroxides/chemistry , Molybdenum/chemistry , Organophosphorus Compounds/analysis , Phosphorus/analysis , Soil Pollutants/analysis , Colorimetry/methods , Environmental Monitoring , Magnetic Resonance Spectroscopy/methods , Sensitivity and Specificity
2.
Environ Sci Technol ; 40(3): 727-33, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16509310

ABSTRACT

Diffuse phosphorus pollution is commonly remediated by diverting runoff through treatment wetlands to sequester phosphorus into soil layers. Much of the sequestered phosphorus occurs in organic forms, yet our understanding of its chemical nature is limited. We used NaOH-EDTA extraction and solution 31P NMR spectroscopy to speciate organic phosphorus sequestered in a large treatment wetland (STA-1W) in Florida, USA. The wetland was constructed on previously farmed peat and was designed to remove phosphorus from agricultural runoff prior to discharge into the Everglades. Unconsolidated benthic floc that had accumulated during the 9-year operation of the wetland was sampled along transects through two connected cells dominated by cattail (Typha dominigensis Pers.) and an additional cell colonized by submerged aquatic vegetation, including southern water nymph (Najas guadalupensis(Spreng.) Magnus) and coontail (Ceratophyllum demersum L.). Organic phosphorus was a greater proportion of the sequestered phosphorus in the cattail marsh compared to the submerged aquatic vegetation wetland, but occurred almost exclusively as phosphate diesters and their alkaline hydrolysis products. Itwas therefore markedly different from the organic phosphorus in mineral soils, which is dominated typically by inositol phosphates. Phosphate diesters are readily degradable in most soils, raising concern about the long-term fate of organic phosphorus in treatment wetlands. Further studies are now necessaryto assess the stability of the sequestered organic phosphorus in response to biogeochemical and hydrological perturbation.


Subject(s)
Ecosystem , Phosphorus/metabolism , Water Supply , Environmental Monitoring , Flocculation , Florida , Hydrolysis , Magnetic Resonance Spectroscopy , Phosphorus/analysis , Phosphorus/chemistry , Plants/chemistry , Tropical Climate , Water Movements
3.
J Environ Qual ; 34(5): 1921-9, 2005.
Article in English | MEDLINE | ID: mdl-16151243

ABSTRACT

Productivity in P limited peatlands is regulated in part by the turnover of organic phosphates, which is influenced by the chemical nature of the compounds involved. We used solution 31P nuclear magnetic resonance (NMR) spectroscopy to quantify organic and inorganic phosphates in benthic floc (a mixture of plant detritus and algae) and underlying soil from sites along P gradients in hard water and soft water areas of the northern Florida Everglades, USA. Phosphorus-enriched sites were dominated by cattail (Typha spp.), while unenriched sites included sawgrass (Cladium jamaicense Crantz) ridges and open-water sloughs. Phosphorus extracted in a solution containing 0.25 M NaOH and 50 mM EDTA (ethylenediaminetetraacetate) included phosphate, phosphate monoesters, DNA, and pyrophosphate. Signals from phosphate monoesters were consistent with those from alkaline hydrolysis products of RNA and phospholipids formed during extraction and analysis, whereas phytic acid (myo-inositol hexakisphosphate), the most abundant organic phosphate in most soils, was not detected. Phosphorus composition was similar among sites, although neither DNA nor pyrophosphate were detected in extracts of benthic floc from a calcareous slough. DNA was a greater proportion of the P extracted from soil compared to benthic floc, while the opposite was true for pyrophosphate. Research on the cycling of organic phosphates in wetlands focuses conventionally on the turnover of phosphate monoesters, but our results suggest strongly that greater emphasis should be given to understanding the role of phosphate diesters and phosphodiesterase activity.


Subject(s)
DNA/analysis , Esters/chemistry , Fresh Water/chemistry , Phosphorus Compounds/chemistry , Soil/analysis , Florida , Magnetic Resonance Spectroscopy
4.
Talanta ; 66(2): 294-306, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-18969994

ABSTRACT

Organic phosphorus is an important component of soil biogeochemical cycles, but must be extracted from soil prior to analysis. Here we critically review the extraction of soil organic phosphorus, including procedures for quantification, speciation, and assessment of biological availability. Quantitative extraction conventionally requires strong acids and bases, which inevitably alter chemical structure. However, a single-step procedure involving sodium hydroxide and EDTA (ethylenediaminetetraacetate) is suitable for most soils and facilitates subsequent speciation by nuclear magnetic resonance spectroscopy. Analysis of extracts by molybdate colorimetry is a potential source of error in all procedures, because organic phosphorus is overestimated in the presence of inorganic polyphosphates or complexes between inorganic phosphate and humic substances. Sequential extraction schemes fractionate organic phosphorus based on chemical solubility, but the link to potential bioavailability is misleading. Research should be directed urgently towards establishing extractable pools of soil organic phosphorus with ecological relevance.

SELECTION OF CITATIONS
SEARCH DETAIL