Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(6): 109959, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832019

ABSTRACT

The developing mouse pancreas is surrounded by mesoderm compartments providing signals that induce pancreas formation. Most pancreatic organoid protocols lack this mesoderm niche and only partially capture the pancreatic cell repertoire. This work aims to generate pancreatic aggregates by differentiating mouse embryonic stem cells (mESCs) into mesoderm progenitors (MPs) and pancreas progenitors (PPs), without using Matrigel. First, mESCs were differentiated into epiblast stem cells (EpiSCs) to enhance the PP differentiation rate. Next, PPs and MPs aggregated together giving rise to various pancreatic cell types, including endocrine, acinar, and ductal cells, and to endothelial cells. Single-cell RNA sequencing analysis revealed a larger endocrine population within the PP + MP aggregates, as compared to PPs alone or PPs in Matrigel aggregates. The PP + MP aggregate gene expression signatures and its endocrine population percentage closely resembled those of the endocrine population found in the mouse embryonic pancreas, which holds promise for studying pancreas development.

2.
Curr Opin Biotechnol ; 73: 188-197, 2022 02.
Article in English | MEDLINE | ID: mdl-34481245

ABSTRACT

A growing number of technologies are being developed to promote vascularization and innervation in engineered tissues. Organ-on-a-chip, organoid and 3D printing technologies, as well as pre-vascularized and oriented scaffolds, have been employed for vascularization and innervation of engineered tissues both in vivo and in vitro. Both vascularization and innervation are critical for neural tissue engineering, as these complex tissues require provision of both blood and nerves. As such, this review will have particular focus on neural tissue engineering. We examine state-of-the-art approaches for tissue vascularization and innervation and identify promising methods for developing vascularized and innervated engineered neural constructs.


Subject(s)
Printing, Three-Dimensional , Tissue Engineering , Tissue Engineering/methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...