Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mammal ; 104(5): 1047-1061, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37800101

ABSTRACT

Captive breeding is often used to produce individuals for reintroduction programs in order to reestablish a species in an area where it has become locally extinct. To maximize the likelihood of establishing a self-sustaining population in the wild, an analysis of data from captive breeding programs is commonly undertaken to (1) increase the quantity of individuals and rate at which they can be released, and (2) maintain or improve the genetic and phenotypic quality of individuals. Here we demonstrate how the knowledge gained from these analyses can also be applied to decision-making during the design of subsequent reintroductions to further advance a reintroduction program toward success. We conducted an analysis of data from a captive breeding program for the threatened pookila (Pseudomys novaehollandiae, New Holland mouse) spanning 6 years. We found evidence for relationships between the reproductive output of pookila and behavioral, demographic, experiential, health, and physiological predictors. Based on a biological interpretation of these results, and with reference to a checklist of all known translocation tactics, we recommend 11 specific design elements to maximize the probability of pookila reproduction postrelease (thereby improving the likelihood of reintroduction success). These recommendations should be interpreted as hypotheses to be evaluated and refined in future reintroduction trials for the pookila. The uncertainty around the postrelease survival and reproduction of a species that is common in reintroduction practice warrants the creative use of existing data to inform adaptive management. Indeed, there is a wealth information in well-kept captive breeding records that is currently underused by reintroduction practitioners. The direct integration of knowledge derived from captive breeding (where available) with decision-making for reintroductions, as described here, will help navigate these uncertainties, which would benefit the conservation of both understudied and well-known species around the world.

2.
PLoS One ; 15(6): e0234455, 2020.
Article in English | MEDLINE | ID: mdl-32598368

ABSTRACT

Threatened species recovery programs are increasingly turning to reintroductions to reverse biodiversity loss. Here we present a real-world example where tactics (techniques which influence post-release performance and persistence) and an adaptive management framework (which incorporates feedback between monitoring and future actions) improved reintroduction success. Across three successive trials we investigated the influence of tactics on the effective survival and post-release dispersal of endangered eastern quolls (Dasyurus viverrinus) reintroduced into Mulligans Flat Woodland Sanctuary, Australian Capital Territory. Founders were monitored for 42 days post-release, and probability of survival and post-release dispersal were tested against trial, origin, sex, den sharing and presence of pouch young. We adopted an adaptive management framework, using monitoring to facilitate rapid learning and to implement interventions that improved reintroduction success. Founders released in the first trial were less likely to survive (28.6%, n = 14) than those founders released the second (76.9%, n = 13) and third trials (87.5%, n = 8). We adapted several tactics in the second and third trials, including the selection of female-only founders to avoid elevated male mortality, and post-mating releases to reduce stress. Founders that moved dens between consecutive nights were less likely to survive, suggesting that minimising post-release dispersal can increase the probability of survival. The probability of moving dens was lower in the second and third trials, for females, and when den sharing with another founder. This study demonstrates that, through iterative trials of tactics involving monitoring and learning, adaptive management can be used to significantly improve the success of reintroduction programs.


Subject(s)
Carnivora/physiology , Ecology/methods , Endangered Species , Marsupialia/physiology , Animal Distribution , Animals , Australia , Australian Capital Territory , Ecological Parameter Monitoring/methods , Female , Male , Population Dynamics , Probability , Research Design
3.
J Wildl Dis ; 56(3): 547-559, 2020 07.
Article in English | MEDLINE | ID: mdl-32017663

ABSTRACT

We evaluated the health of 31 (eight males, 23 females) founder eastern quolls (Dasyurus viverrinus), translocated to a fenced reserve in the Australian Capital Territory between February 2016 and July 2017. Quolls were wild caught in Tasmania (16 animals) or captive bred at Mount Rothwell Biodiversity Interpretation Centre, Victoria (15 animals). Quolls were assessed for the presence of selected potential pathogens (Toxoplasma gondii, herpesviruses, Salmonella serovars, hemoprotozoa, and ectoparasites). We assessed the relationships among sex, provenance (captive or free ranging), T. gondii or herpesvirus infection, weight, and hematologic and biochemical variables. Six of 21 quolls (29%) tested were seropositive for antibodies to T. gondii. Seropositive quolls weighed significantly more and had significantly lower potassium levels, anion gaps, and urea and triglyceride levels than seronegative quolls had. Eighteen of 31 (58%) combined conjunctival-pharyngeal-cloacal swabs collected from quolls were PCR positive for a newly identified gammaherpesvirus, tentatively named dasyurid gammaherpesvirus 3. There were no significant differences among hematologic and biochemical variables or body weights from PCR-positive and PCR-negative quolls. Eighteen of 18 (100%) of rectal-swab samples were culture negative for Salmonella serovars. Three species of tick (Ixodes tasmani, Ixodes fecialis, and Ixodes holocyclus), two species of mite (Andreacus radfordi, one unidentified), and four species of flea (Pygiopsylla hoplia, Acanthopsylla rothschildi rothschildi, Uropsylla tasmanica, and Stephanocircus dasyuri), were detected on wild-caught quolls, whereas a fifth species of flea, Echidnophaga myremecobii, was detected only on captive-bred quolls. Five of 15 blood samples (33%) were positive for hemoprotozoan DNA via PCR, a novel Hepatozoon species, a novel Theileria species, Theileria paparinii, and Trypanosoma copemani were detected. Despite the presence of several potential pathogens known to be associated with disease in other marsupials, the quolls were considered to be in good general health, suitable for translocation, and a viable population was subsequently established.


Subject(s)
Communicable Diseases/veterinary , Conservation of Natural Resources , Marsupialia , Parasitic Diseases, Animal/parasitology , Animals , Female , Humans , Male , Parasitic Diseases, Animal/diagnosis , Parasitic Diseases, Animal/epidemiology , Tasmania , Victoria
SELECTION OF CITATIONS
SEARCH DETAIL
...