Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 37(24): 4876-4878, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34145888

ABSTRACT

MOTIVATION: Native mass spectrometry is now a well-established method for the investigation of protein complexes, specifically their subunit stoichiometry and ligand binding properties. Recent advances allowing the analysis of complex mixtures lead to an increasing diversity and complexity in the spectra obtained. These spectra can be time-consuming to tackle through manual assignment and challenging for automated approaches. RESULTS: Native Mass Spectrometry Visual Analyser is a web-based tool to augment the manual process of peak assignment. In addition to matching masses to the stoichiometry of its component subunits, it allows raw data processing, assignment and annotation and permits mass spectra to be shared with their respective interpretation. AVAILABILITY AND IMPLEMENTATION: NaViA is open-source and can be accessed online under https://navia.ms. The source code and documentation can be accessed at https://github.com/d-que/navia, under the BSD 2-Clause licence. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Mass Spectrometry
2.
Structure ; 28(4): 475-487.e3, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32053772

ABSTRACT

Escherichia coli lipoprotein precursors at the inner membrane undergo three maturation stages before transport by the Lol system to the outer membrane. Here, we develop a pipeline to simulate the membrane association of bacterial lipoproteins in their four maturation states. This has enabled us to model and simulate 81 of the predicted 114 E. coli lipoproteins and reveal their interactions with the host lipid membrane. As part of this set we characterize the membrane contacts of LolB, the lipoprotein involved in periplasmic translocation. We also consider the means and bioenergetics for lipoprotein localization. Our calculations uncover a preference for LolB over LolA and therefore indicate how a lipoprotein may be favorably transferred from the inner to outer membrane. Finally, we reveal that LolC has a role in membrane destabilization, thereby promoting lipoprotein transfer to LolA.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane/metabolism , Escherichia coli Proteins/chemistry , Molecular Chaperones/chemistry , Molecular Dynamics Simulation , Periplasmic Binding Proteins/chemistry , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli , Escherichia coli Proteins/metabolism , Molecular Chaperones/metabolism , Periplasm/metabolism , Periplasmic Binding Proteins/metabolism , Protein Binding , Protein Transport
3.
Nat Commun ; 10(1): 3956, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477691

ABSTRACT

Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.


Subject(s)
Anoctamins/metabolism , Endoplasmic Reticulum/metabolism , Lipids/chemistry , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Animals , Anoctamins/chemistry , Anoctamins/genetics , COS Cells , Calcium/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera
4.
Nucleic Acids Res ; 47(D1): D390-D397, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30418645

ABSTRACT

Integral membrane proteins fulfil important roles in many crucial biological processes, including cell signalling, molecular transport and bioenergetic processes. Advancements in experimental techniques are revealing high resolution structures for an increasing number of membrane proteins. Yet, these structures are rarely resolved in complex with membrane lipids. In 2015, the MemProtMD pipeline was developed to allow the automated lipid bilayer assembly around new membrane protein structures, released from the Protein Data Bank (PDB). To make these data available to the scientific community, a web database (http://memprotmd.bioch.ox.ac.uk) has been developed. Simulations and the results of subsequent analysis can be viewed using a web browser, including interactive 3D visualizations of the assembled bilayer and 2D visualizations of lipid contact data and membrane protein topology. In addition, ensemble analyses are performed to detail conserved lipid interaction information across proteins, families and for the entire database of 3506 PDB entries. Proteins may be searched using keywords, PDB or Uniprot identifier, or browsed using classification systems, such as Pfam, Gene Ontology annotation, mpstruc or the Transporter Classification Database. All files required to run further molecular simulations of proteins in the database are provided.


Subject(s)
Databases, Protein , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Amino Acid Sequence , Animals , Computer Simulation , Gene Ontology , Humans , Internet , Lipid Bilayers/chemistry , Membrane Proteins/genetics , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Annotation , Protein Conformation
5.
Proc Natl Acad Sci U S A ; 115(26): 6691-6696, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891712

ABSTRACT

Strong interactions between lipids and proteins occur primarily through association of charged headgroups and amino acid side chains, rendering the protonation status of both partners important. Here we use native mass spectrometry to explore lipid binding as a function of charge of the outer membrane porin F (OmpF). We find that binding of anionic phosphatidylglycerol (POPG) or zwitterionic phosphatidylcholine (POPC) to OmpF is sensitive to electrospray polarity while the effects of charge are less pronounced for other proteins in outer or mitochondrial membranes: the ferripyoverdine receptor (FpvA) or the voltage-dependent anion channel (VDAC). Only marginal charge-induced differences were observed for inner membrane proteins: the ammonia channel (AmtB) or the mechanosensitive channel. To understand these different sensitivities, we performed an extensive bioinformatics analysis of membrane protein structures and found that OmpF, and to a lesser extent FpvA and VDAC, have atypically high local densities of basic and acidic residues in their lipid headgroup-binding regions. Coarse-grained molecular dynamics simulations, in mixed lipid bilayers, further implicate changes in charge by demonstrating preferential binding of anionic POPG over zwitterionic POPC to protonated OmpF, an effect not observed to the same extent for AmtB. Moreover, electrophysiology and mass-spectrometry-based ligand-binding experiments, at low pH, show that POPG can maintain OmpF channels in open conformations for extended time periods. Since the outer membrane is composed almost entirely of anionic lipopolysaccharide, with similar headgroup properties to POPG, such anionic lipid binding could prevent closure of OmpF channels, thereby increasing access of antibiotics that use porin-mediated pathways.


Subject(s)
Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Porins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Cation Transport Proteins/chemistry , Cation Transport Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Hydrogen-Ion Concentration , Models, Chemical , Models, Molecular , Molecular Dynamics Simulation , Porins/chemistry , Protein Binding , Protein Conformation , Spectrometry, Mass, Electrospray Ionization , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/metabolism , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism
6.
Sci Rep ; 7(1): 4599, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676696

ABSTRACT

Riboswitches are structural genetic regulatory elements that directly couple the sensing of small molecules to gene expression. They have considerable potential for applications throughout synthetic biology and bio-manufacturing as they are able to sense a wide range of small molecules and regulate gene expression in response. Despite over a decade of research they have yet to reach this considerable potential as they cannot yet be treated as modular components. This is due to several limitations including sensitivity to changes in genetic context, low tunability, and variability in performance. To overcome the associated difficulties with riboswitches, we have designed and introduced a novel genetic element called a ribo-attenuator in Bacteria. This genetic element allows for predictable tuning, insulation from contextual changes, and a reduction in expression variation. Ribo-attenuators allow riboswitches to be treated as truly modular and tunable components, thus increasing their reliability for a wide range of applications.


Subject(s)
Escherichia coli/growth & development , Genetic Engineering/methods , Riboswitch , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Synthetic Biology , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...