Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(15): 8374-8381, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32229569

ABSTRACT

In the 16th century, the Calusa, a fisher-gatherer-hunter society, were the most politically complex polity in Florida, and the archaeological site of Mound Key was their capital. Based on historic documents, the ruling elite at Mound Key controlled surplus production and distribution. The question remains exactly how such surplus pooling occurred and when such traditions were elaborated on and reflected in the built environment. Our work focuses on the "watercourts" and associated areas at Mound Key. These subrectangular constructions of shell and other sediments around centralized inundated areas have been variously interpreted. Here, we detail when these enclosures were constructed and their engineering and function. We argue that these structures were for large surplus capture and storage of aquatic resources that were controlled and managed by corporate groups.

2.
Mol Ecol Resour ; 2018 May 24.
Article in English | MEDLINE | ID: mdl-29797549

ABSTRACT

DNA metabarcoding is an increasingly popular method to characterize and quantify biodiversity in environmental samples. Metabarcoding approaches simultaneously amplify a short, variable genomic region, or "barcode," from a broad taxonomic group via the polymerase chain reaction (PCR), using universal primers that anneal to flanking conserved regions. Results of these experiments are reported as occurrence data, which provide a list of taxa amplified from the sample, or relative abundance data, which measure the relative contribution of each taxon to the overall composition of amplified product. The accuracy of both occurrence and relative abundance estimates can be affected by a variety of biological and technical biases. For example, taxa with larger biomass may be better represented in environmental samples than those with smaller biomass. Here, we explore how polymerase choice, a potential source of technical bias, might influence results in metabarcoding experiments. We compared potential biases of six commercially available polymerases using a combination of mixtures of amplifiable synthetic sequences and real sedimentary DNA extracts. We find that polymerase choice can affect both occurrence and relative abundance estimates and that the main source of this bias appears to be polymerase preference for sequences with specific GC contents. We further recommend an experimental approach for metabarcoding based on results of our synthetic experiments.

3.
Proc Natl Acad Sci U S A ; 113(33): 9310-4, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27482085

ABSTRACT

Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence.


Subject(s)
Extinction, Biological , Mammoths/physiology , Alaska , Animals , Time Factors
4.
PLoS One ; 11(4): e0154611, 2016.
Article in English | MEDLINE | ID: mdl-27123928

ABSTRACT

Mound Key was once the capital of the Calusa Kingdom, a large Pre-Hispanic polity that controlled much of southern Florida. Mound Key, like other archaeological sites along the southwest Gulf Coast, is a large expanse of shell and other anthropogenic sediments. The challenges that these sites pose are largely due to the size and areal extent of the deposits, some of which begin up to a meter below and exceed nine meters above modern sea levels. Additionally, the complex depositional sequences at these sites present difficulties in determining their chronology. Here, we examine the development of Mound Key as an anthropogenic island through systematic coring of the deposits, excavations, and intensive radiocarbon dating. The resulting data, which include the reversals of radiocarbon dates from cores and dates from mound-top features, lend insight into the temporality of site formation. We use these insights to discuss the nature and scale of human activities that worked to form this large island in the context of its dynamic, environmental setting. We present the case that deposits within Mound Key's central area accumulated through complex processes that represent a diversity of human action including midden accumulation and the redeposition of older sediments as mound fill.


Subject(s)
Archaeology/methods , Geologic Sediments/analysis , Radiometric Dating , Florida , Humans , Islands
5.
Proc Natl Acad Sci U S A ; 112(49): 15107-12, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26630007

ABSTRACT

The genus Cucurbita (squashes, pumpkins, gourds) contains numerous domesticated lineages with ancient New World origins. It was broadly distributed in the past but has declined to the point that several of the crops' progenitor species are scarce or unknown in the wild. We hypothesize that Holocene ecological shifts and megafaunal extinctions severely impacted wild Cucurbita, whereas their domestic counterparts adapted to changing conditions via symbiosis with human cultivators. First, we used high-throughput sequencing to analyze complete plastid genomes of 91 total Cucurbita samples, comprising ancient (n = 19), modern wild (n = 30), and modern domestic (n = 42) taxa. This analysis demonstrates independent domestication in eastern North America, evidence of a previously unknown pathway to domestication in northeastern Mexico, and broad archaeological distributions of taxa currently unknown in the wild. Further, sequence similarity between distant wild populations suggests recent fragmentation. Collectively, these results point to wild-type declines coinciding with widespread domestication. Second, we hypothesize that the disappearance of large herbivores struck a critical ecological blow against wild Cucurbita, and we take initial steps to consider this hypothesis through cross-mammal analyses of bitter taste receptor gene repertoires. Directly, megafauna consumed Cucurbita fruits and dispersed their seeds; wild Cucurbita were likely left without mutualistic dispersal partners in the Holocene because they are unpalatable to smaller surviving mammals with more bitter taste receptor genes. Indirectly, megafauna maintained mosaic-like landscapes ideal for Cucurbita, and vegetative changes following the megafaunal extinctions likely crowded out their disturbed-ground niche. Thus, anthropogenic landscapes provided favorable growth habitats and willing dispersal partners in the wake of ecological upheaval.


Subject(s)
Adaptation, Physiological , Cucurbita/physiology , Ecology , Extinction, Biological , Cucurbita/genetics , Genome, Plant , Molecular Sequence Data , Plastids/genetics
6.
Proc Natl Acad Sci U S A ; 111(8): 2937-41, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24516122

ABSTRACT

Bottle gourd (Lagenaria siceraria) was one of the first domesticated plants, and the only one with a global distribution during pre-Columbian times. Although native to Africa, bottle gourd was in use by humans in east Asia, possibly as early as 11,000 y ago (BP) and in the Americas by 10,000 BP. Despite its utilitarian importance to diverse human populations, it remains unresolved how the bottle gourd came to be so widely distributed, and in particular how and when it arrived in the New World. A previous study using ancient DNA concluded that Paleoindians transported already domesticated gourds to the Americas from Asia when colonizing the New World [Erickson et al. (2005) Proc Natl Acad Sci USA 102(51):18315-18320]. However, this scenario requires the propagation of tropical-adapted bottle gourds across the Arctic. Here, we isolate 86,000 base pairs of plastid DNA from a geographically broad sample of archaeological and living bottle gourds. In contrast to the earlier results, we find that all pre-Columbian bottle gourds are most closely related to African gourds, not Asian gourds. Ocean-current drift modeling shows that wild African gourds could have simply floated across the Atlantic during the Late Pleistocene. Once they arrived in the New World, naturalized gourd populations likely became established in the Neotropics via dispersal by megafaunal mammals. These wild populations were domesticated in several distinct New World locales, most likely near established centers of food crop domestication.


Subject(s)
Agriculture/history , Cucurbitaceae/genetics , Demography , Human Migration/history , Phylogeny , Water Movements , Africa , Americas , Asia , Base Sequence , Bayes Theorem , Computer Simulation , Cucurbitaceae/physiology , History, Ancient , Humans , Models, Genetic , Molecular Sequence Data , Oceans and Seas , Plastids/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...