Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Mil Health ; 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35878971

ABSTRACT

BACKGROUND: In the face of the COVID-19 pandemic, the Defence Science and Technology Laboratory (Dstl) and Defence Pathology combined to form the Defence Clinical Lab (DCL), an accredited (ISO/IEC 17025:2017) high-throughput SARS-CoV-2 PCR screening capability for military personnel. LABORATORY STRUCTURE AND RESOURCE: The DCL was modular in organisation, with laboratory modules and supporting functions combining to provide the accredited SARS-CoV-2 (envelope (E)-gene) PCR assay. The DCL was resourced by Dstl scientists and military clinicians and biomedical scientists. LABORATORY RESULTS: Over 12 months of operation, the DCL was open on 289 days and tested over 72 000 samples. Six hundred military SARS-CoV-2-positive results were reported with a median E-gene quantitation cycle (Cq) value of 30.44. The lowest Cq value for a positive result observed was 11.20. Only 64 samples (0.09%) were voided due to assay inhibition after processing started. CONCLUSIONS: Through a sustained effort and despite various operational issues, the collaboration between Dstl scientific expertise and Defence Pathology clinical expertise provided the UK military with an accredited high-throughput SARS-CoV-2 PCR test capability at the height of the COVID-19 pandemic. The DCL helped facilitate military training and operational deployments contributing to the maintenance of UK military capability. In offering a bespoke capability, including features such as testing samples in unit batches and oversight by military consultant microbiologists, the DCL provided additional benefits to the UK Ministry of Defence that were potentially not available from other SARS-CoV-2 PCR laboratories. The links between Dstl and Defence Pathology have also been strengthened, benefitting future research activities and operational responses.

2.
Eur J Clin Microbiol Infect Dis ; 36(11): 2147-2154, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28856457

ABSTRACT

Burkholderia pseudomallei is a Gram-negative intracellular bacterium that causes the disease melioidosis. The disease can be fatal if left untreated or when antibiotic therapy is delayed and total clearance of the pathogen from the host is often not accomplished with current therapies. Thus, new therapeutic approaches for the treatment of infections caused by B. pseudomallei are required. To better understand host responses to B. pseudomallei infection, the activation of key proteins involved in the TLR inflammatory cascade was measured by western blotting. Activation of the mitogen-activated protein kinases (MAPKs) p38 and ERK were both significantly altered during both in vitro and in vivo infection. In considering an approach for therapy of B. pseudomallei infection the inhibition of ERK was achieved in vitro using the inhibitor PD0325901, along with decreased TNF-α production. However, the reduction in phosphorylated ERK and TNF-α release did not correspond with decreased bacterial replication or enhance clearance from infected macrophages. Despite this apparent lack of effect on the intracellular growth of B. pseudomallei in vitro, it is not clear what effect inhibition of ERK activation might have on outcome of disease in vivo. It may be that decreasing the levels of TNF-α in vivo could aid in reducing the overactive immune response that is known to ensue following B. pseudomallei infection, thereby increasing host survival.


Subject(s)
Burkholderia pseudomallei/growth & development , Chemokine CCL2/biosynthesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Melioidosis/pathology , Tumor Necrosis Factor-alpha/biosynthesis , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Benzamides/pharmacology , Burkholderia pseudomallei/immunology , Burkholderia pseudomallei/metabolism , Cell Line , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Female , Macrophages/microbiology , Melioidosis/immunology , Melioidosis/microbiology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...