Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ASAIO J ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38537074

ABSTRACT

The Pennsylvania State University (PSU) Child Pump, a centrifugal continuous-flow ventricular assist device (cf-VAD), is being developed as a suitable long-term implantable device for pediatric heart failure patients between 10 and 35 kg, body surface area (BSA) of 0.5-1.2 m2, 1-11 years of age, and requiring a mean cardiac output of 1.0-3.5 L/min. In-vitro hydraulic and hemodynamic performances were evaluated on a custom mock circulatory loop with ovine blood. Normalized index of hemolysis (NIH) was evaluated under four conditions: 1) 8,300 rpm, 3.5 L/min, ΔP = 60 mm Hg, 2) 8,150 rpm, 5.1 L/min, ΔP = 20 mm Hg, 3) 8,400 rpm, 3.2 L/min, ΔP = 70 mm Hg, and 4) 9,850 rpm, 5.0 L/min, ΔP = 80 mm Hg, resulting in normalized index of hemolysis = 0.027 ± 0.013, 0.015 ± 0.006, 0.016 ± 0.008, and 0.026 ± 0.011 mg/dl, respectively. A mock fit study was conducted using a three-dimensional printed model of a 19 kg patient's thoracic cavity to compare the size of the PSU Child Pump to the HeartMate3 and the HVAD. Results indicate the PSU Child Pump will be a safer, appropriately sized device capable of providing the given patient cohort proper support while minimizing the risks of blood trauma as they wait for a transplant.

2.
ASAIO J ; 69(5): 467-474, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36399789

ABSTRACT

The loss of high molecular weight multimers (HMWM) of von Willebrand factor (vWF) in aortic stenosis (AS) and continuous-flow left ventricular assist devices (cf-LVADs) is believed to be associated with high turbulent blood shear. The objective of this study is to understand the degradation mechanism of HMWM in terms of exposure time (kinetic) and flow regime (dynamics) within clinically relevant pathophysiologic conditions. A custom high-shear rotary device capable of creating fully controlled exposure times and flows was used. The system was set so that human platelet-poor plasma flowed through at 1.75 ml/sec, 0.76 ml/sec, or 0.38 ml/sec resulting in the exposure time ( texp ) of 22, 50, or 100 ms, respectively. The flow was characterized by the Reynolds number (Re). The device was run under laminar (Re = 1,500), transitional (Re = 3,000; Re = 3,500), and turbulent (Re = 4,500) conditions at a given texp followed by multimer analysis. No degradation was observed at laminar flow at all given texp . Degradation of HMWM at a given texp increases with the Re. Re ( p < 0.0001) and texp ( p = 0.0034) are significant factors in the degradation of HMWM. Interaction between Re and texp , however, is not always significant ( p = 0.73).


Subject(s)
Heart-Assist Devices , von Willebrand Diseases , Humans , von Willebrand Factor/metabolism , Kinetics , Molecular Weight
3.
ASAIO J ; 67(6): 666-674, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33164999

ABSTRACT

Supraphysiologic high shear stresses created in calcific aortic stenosis (AS) are known to cause hemostatic abnormalities, however, the relationship between the complex blood flows over the severity of AS and hemostatic abnormalities still remains unclear. This study systematically characterized the blood flow in mild, moderate, and severe AS. A series of large eddy simulations (LES) validated by particle image velocimetry were performed on physiologically representative AS models with a peak physiologic flow condition of 18 liter per minute. Time-accurate velocity fields, transvalvular pressure gradient, and laminar viscous-and turbulent (or Reynolds) shear stresses (RSSmax) were evaluated for each degree of severity. The peak velocities of mild, moderate, and severe AS were on the order of 2.0, 4.0, and 8.0 m/s, respectively. Jet velocity in severe AS was highly skewed with extremely high velocity (as high as 8 m/s) and mainly traveled through the posterior aortic wall up to the aortic arch while still carrying a relatively high velocity, that is, >4 m/s. The mean laminar viscous wall shear stresses (WSS) for mild, moderate, and severe AS were on the order of 40, 100, and 180 Pa, respectively. The RSSmax were on the order of 260, 490, and 2,500 Pa for mild, moderate, and severe AS, respectively. This study may provide a link between altered flows in AS and hemostatic abnormalities such as acquired von Willebrand syndrome and hemolysis, thus, help diagnosing and timing of the treatment.


Subject(s)
Aortic Valve Stenosis/physiopathology , Aorta/physiopathology , Blood Flow Velocity/physiology , Humans
4.
ASAIO J ; 65(4): 371-379, 2019.
Article in English | MEDLINE | ID: mdl-30681440

ABSTRACT

Mechanical circulatory support for children under 6 years of age remains a challenge. This article describes the preclinical status and the results of recent animal testing with the Penn State Infant Left Ventricular Assist Device (VAD). The objectives have been to 1) demonstrate acceptably low thromboembolic risk to support Food and Drug Administration approval, 2) challenge the device by using minimal to no anticoagulation in order to identify any design or manufacturing weaknesses, and 3) improve our understanding of device thrombogenicity in the ovine animal model, using multicomponent measurements of the coagulation system and renal ischemia quantification, in order to better correlate animal results with human results.The Infant VAD was implanted as a left VAD (LVAD) in 18-29 kg lambs. Twelve LVAD and five surgical sham animals were electively terminated after approximately 30 or 60 days. Anticoagulation was by unfractionated heparin targeting thromboelastography R times of 2x normal (n = 6) or 1x normal (n = 6) resulting in negligible heparin activity as measured by anti-Xa assay (<0.1 IU/ml). Platelet inhibitors were not used.There were no clinically evident strokes or evidence of end organ dysfunction in any of the 12 electively terminated LVAD studies. The degree of renal ischemic lesions in device animals was not significantly different than that found in five surgical sham studies, demonstrating minimal device thromboembolism.In summary, these results in a challenging animal test protocol support the conclusion that the Penn State Infant VAD has a low thromboembolic risk and may allow lower levels of anticoagulation.


Subject(s)
Heart Failure/surgery , Heart-Assist Devices/adverse effects , Thromboembolism/prevention & control , Animals , Anticoagulants/therapeutic use , Blood Coagulation , Equipment Design , Female , Heart Failure/complications , Heparin , Humans , Infant , Male , Models, Animal , Sheep , Sheep, Domestic
5.
Artif Organs ; 43(2): 199-206, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30374981

ABSTRACT

Despite the prevailing use of the continuous flow left ventricular assist devices (cf-LVAD), acquired von Willebrand syndrome (AvWS) associated with cf-LVAD still remains a major complication. As AvWS is known to be dependent on shear stress (τ) and exposure time (texp ), this study examined the degradation of high molecular weight multimers (HMWM) of von Willebrand factor (vWF) in terms of τ and texp . Two custom apparatus, i.e., capillary-tubing-type degrader (CTD) and Taylor-Couette-type degrader (TCD) were developed for short-term (0.033 sec ≤ texp  ≤ 1.05 s) and long-term (10 s ≤ texp  ≤ 10 min) shear exposures of vWF, respectively. Flow conditions indexed by Reynolds number (Re) for CTD were 14 ≤ Re ≤ 288 with corresponding laminar stress level of 52 ≤  τ CTD  ≤ 1042 dyne/cm2 . Flow conditions for TCD were 100 ≤ Re ≤ 2500 with corresponding rotor speed of 180 ≤ o  ≤ 4000 RPM and laminar stress level of 50 ≤  τ TCD  ≤ 1114 dyne/cm2 . Due to transitional and turbulent flows in TCD at Re > 1117, total stress (i.e., τ total  = laminar + turbulent) was also calculated using a computational fluid dynamics (CFD) solver, Converge CFD (Converge Science Inc., Madison, WI, USA). Inhibition of ADAMTS13 with different concentration of EDTA (5 mM and 10 mM) was also performed to investigate the mechanism of cleavage in terms of mechanical and enzymatic aspects. Degradation of HMWM with CTD was negligible at all given testing conditions. Although no degradation of HMWM was observed with TCD at Re < 1117 ( τ total  = 1012 dyne/cm2 ), increase in degradation of HMWM was observed beyond Re of 1117 for all given exposure times. At Re ~ 2500 ( τ total  = 3070 dyne/cm2 ) with texp  = 60 s, a severe degradation of HMWM (90.7 ± 3.8%, abnormal) was observed, and almost complete degradation of HMWM (96.1 ± 1.9%, abnormal) was observed with texp  = 600 s. The inhibition studies with 5 mM EDTA at Re ~ 2500 showed that loss of HMWM was negligible (<10%, normal) for all given exposure times except for texp  = 10 min (39.5 ± 22.3%, borderline-abnormal). With 10 mM EDTA, no degradation of HMWM was observed (11.1 ± 4.4%, normal) even for texp  = 10 min. This study investigated the effect of shear stress and exposure time on the HMWM of vWF in laminar and turbulent flows. The inhibition study by EDTA confirms that degradation of HMWM is initiated by shear-induced unfolding followed by enzymatic cleavage at given conditions. Determination of magnitude of each mechanism needs further investigation. It is also important to note that the degradation of vWF is highly dependent on turbulence regardless of the time exposed within our testing conditions.


Subject(s)
Heart-Assist Devices/adverse effects , von Willebrand Diseases/etiology , von Willebrand Factor/metabolism , Hemodynamics/physiology , Humans , Materials Testing , von Willebrand Diseases/blood
6.
ASAIO J ; 64(1): 63-69, 2018.
Article in English | MEDLINE | ID: mdl-28661910

ABSTRACT

Reynolds shear stress (RSS) has served as a metric for the effect of turbulence on hemolysis. Forstrom (1969) and Sallam and Hwang (1984) determined the RSS threshold for hemolysis to be 50,000 and 4,000 dyne/cm, respectively, using a turbulent jet. Despite the order of magnitude discrepancy, the threshold by Sallam and Hwang has been frequently cited for hemolytic potential in blood pumps. We recreated a Sallam apparatus (SA) to resolve this discrepancy and provide additional data to be used in developing a more accurate hemolysis model. Hemolysis was measured over a large range of Reynolds numbers (Re) (Re = 1,000-80,000). Washed bovine red blood cells (RBCs) were injected into the free jet of phosphate buffered saline, and hemolysis was quantified using a percent hemolysis, Hp = h (100 - hematocrit [HCT])/Hb, where h (mg/dl) is free hemoglobin and Hb (mg/dl) is total hemoglobin. Reynolds shear stress was calculated using two-dimensional laser Doppler velocimetry. Reynolds shear stress of ≥30,000 dyne/cm corresponding to Re of ≥60,000 appeared to cause hemolysis (p < 0.05). This RSS is an order of magnitude greater than the RSS threshold that Sallam and Hwang suggested, and it is similar to Forstrom's RSS threshold. This study resolved a long-standing uncertainty regarding the critical values of RSS for hemolysis and may provide a foundation for a more accurate hemolysis model.


Subject(s)
Erythrocytes/cytology , Hematologic Tests/methods , Hemolysis/physiology , Stress, Mechanical , Animals , Blood Flow Velocity , Cattle , Hematocrit , Hemoglobins , Humans , Laser-Doppler Flowmetry/methods
7.
Pigment Cell Melanoma Res ; 30(6): 541-552, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28685959

ABSTRACT

Despite recent breakthroughs in targeted- and immune-based therapies, rapid development of drug resistance remains a hurdle for the long-term treatment of patients with melanoma. Targeting metastatically spreading circulating tumor cells (CTCs) may provide an additional approach to manage melanoma. This study investigates whether targeting cholesterol transport in melanoma CTCs can retard metastasis development. Nanolipolee-007, the liposomal form of leelamine, reduced melanoma metastasis in both a novel in vitro flow system mimicking the circulating system and in experimental as well as spontaneous animal metastasis models, irrespective of the BRAF mutational status of the CTCs. Leelamine led to cholesterol trapping in lysosomes, which subsequently shut down receptor-mediated endocytosis, endosome trafficking, and inhibited the major oncogenic signaling cascades important for survival such as the AKT pathway. As pAKT is important in CTC survival, inhibition by targeting cholesterol metabolism led to apoptosis, suggesting this approach might be particularly effective for those CTCs having high levels of pAKT to aid survival in the circulation system.


Subject(s)
Cholesterol/metabolism , Lung Neoplasms/secondary , Melanoma/metabolism , Melanoma/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Animals , Apoptosis , Biological Transport , Cell Line , Cell Proliferation , Cell Survival , Disease Models, Animal , Endocytosis , Liposomes , Lung Neoplasms/pathology , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Transferrin/metabolism , Rheology , Signal Transduction
8.
ASAIO J ; 55(6): 556-61, 2009.
Article in English | MEDLINE | ID: mdl-19770799

ABSTRACT

The design and initial test results of a new passively suspended Tesla type left ventricular assist device blood pump are described. Computational fluid dynamics (CFD) analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 L/min at a 70 mm Hg head rise at 8,000 revolutions per minute (RPM). The pump has demonstrated a normalized index of hemolysis level below 0.02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned and endurance testing of the device.


Subject(s)
Assisted Circulation/instrumentation , Heart-Assist Devices , Animals , Cattle , Equipment Design , Heart Ventricles , Hemolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...