Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 20(1): 209, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705084

ABSTRACT

BACKGROUND: In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS: An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS: Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS: Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.


Subject(s)
Encephalitis , Multiple Sclerosis , Humans , Animals , Mice , Acetylglucosamine/therapeutic use , Interleukin-17 , Glatiramer Acetate , Interleukin-6 , Multiple Sclerosis/drug therapy , Inflammation/drug therapy , Cytokines
2.
Nat Aging ; 2(3): 231-242, 2022 03.
Article in English | MEDLINE | ID: mdl-35528547

ABSTRACT

Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males, in naïve more than memory T cells, and in CD4+ more than CD8+ T cells. Female sex hormones and thymic output of naïve T cells (TN) decrease with age, however neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells, and triggered increased branching. N-acetylglucosamine, a rate-limiting metabolite for branching, increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy, where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine.


Subject(s)
Acetylglucosamine , CD8-Positive T-Lymphocytes , Humans , Male , Female , Animals , Mice , Interleukin-7 , Aging , Polysaccharides
3.
JAMA Neurol ; 78(7): 842-852, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33970182

ABSTRACT

Importance: N-glycan branching modulates cell surface receptor availability, and its deficiency in mice promotes inflammatory demyelination, reduced myelination, and neurodegeneration. N-acetylglucosamine (GlcNAc) is a rate-limiting substrate for N-glycan branching, but, to our knowledge, endogenous serum levels in patients with multiple sclerosis (MS) are unknown. Objective: To investigate a marker of endogenous serum GlcNAc levels in patients with MS. Design, Setting, and Participants: A cross-sectional discovery study and cross-sectional confirmatory study were conducted at 2 academic MS centers in the US and Germany. The discovery study recruited 54 patients with MS from an outpatient clinic as well as 66 healthy controls between April 20, 2010, and June 21, 2013. The confirmatory study recruited 180 patients with MS from screening visits at an academic MS study center between April 9, 2007, and February 29, 2016. Serum samples were analyzed from December 2, 2013, to March 2, 2015. Statistical analysis was performed from February 23, 2020, to March 18, 2021. Main Outcomes and Measures: Serum levels of GlcNAc plus its stereoisomers, termed N-acetylhexosamine (HexNAc), were assessed using targeted tandem mass spectroscopy. Secondary outcomes (confirmatory study) comprised imaging and clinical disease markers. Results: The discovery cohort included 66 healthy controls (38 women; mean [SD] age, 42 [20] years), 33 patients with relapsing-remitting MS (RRMS; 25 women; mean [SD] age, 50 [11] years), and 21 patients with progressive MS (PMS; 14 women; mean [SD] age, 55 [7] years). The confirmatory cohort included 125 patients with RRMS (83 women; mean [SD] age, 40 [9] years) and 55 patients with PMS (22 women; mean [SD] age, 49 [80] years). In the discovery cohort, the mean (SD) serum level of GlcNAc plus its stereoisomers (HexNAc) was 710 (174) nM in healthy controls and marginally reduced in patients with RRMS (mean [SD] level, 682 [173] nM; P = .04), whereas patients with PMS displayed markedly reduced levels compared with healthy controls (mean [SD] level, 548 [101] nM; P = 9.55 × 10-9) and patients with RRMS (P = 1.83 × 10-4). The difference between patients with RRMS (mean [SD] level, 709 [193] nM) and those with PMS (mean [SD] level, 405 [161] nM; P = 7.6 × 10-18) was confirmed in the independent confirmatory cohort. Lower HexNAc serum levels correlated with worse expanded disability status scale scores (ρ = -0.485; P = 4.73 × 10-12), lower thalamic volume (t = 1.7; P = .04), and thinner retinal nerve fiber layer (B = 0.012 [SE = 7.5 × 10-11]; P = .008). Low baseline serum HexNAc levels correlated with a greater percentage of brain volume loss at 18 months (t = 1.8; P = .04). Conclusions and Relevance: This study suggests that deficiency of GlcNAc plus its stereoisomers (HexNAc) may be a biomarker for PMS. Previous preclinical, human genetic, and ex vivo human mechanistic studies revealed that N-glycan branching and/or GlcNAc may reduce proinflammatory responses, promote myelin repair, and decrease neurodegeneration. Combined, the data suggest that GlcNAc deficiency may be associated with progressive disease and neurodegeneration in patients with MS.


Subject(s)
Acetylglucosamine/blood , Multiple Sclerosis, Chronic Progressive/blood , Neurodegenerative Diseases/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Cohort Studies , Cross-Sectional Studies , Female , Germany , Humans , Male , Middle Aged , United States
4.
J Biol Chem ; 295(51): 17413-17424, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33453988

ABSTRACT

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.


Subject(s)
Acetylglucosamine/pharmacology , Cell Differentiation , Myelin Sheath/metabolism , Neuroprotective Agents/pharmacology , Oligodendrocyte Precursor Cells/cytology , Acetylglucosamine/administration & dosage , Acetylglucosamine/therapeutic use , Administration, Oral , Animals , Biomarkers/metabolism , Demyelinating Diseases/drug therapy , Endocytosis , Female , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction
5.
J Neuroimmunol ; 256(1-2): 71-6, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23351704

ABSTRACT

Deficiency of the Golgi N-glycan branching enzyme Mgat5 in mice promotes T cell hyperactivity, endocytosis of CTLA-4 and autoimmunity, including a spontaneous multiple sclerosis (MS)-like disease. Multiple genetic and environmental MS risk factors lower N-glycan branching in T cells. These include variants in interleukin-2 receptor-α (IL2RA), interleukin-7 receptor-α (IL7RA), and MGAT1, a Golgi branching enzyme upstream of MGAT5, as well as vitamin D3 deficiency and Golgi substrate metabolism. Here we describe linked intronic variants of MGAT5 that are associated with reduced N-glycan branching, CTLA-4 surface expression and MS (p=5.79×10(-9), n=7,741), the latter additive with the MGAT1, IL2RA and IL7RA MS risk variants (p=1.76×10(-9), OR=0.67-1.83, n=3,518).


Subject(s)
Genetic Variation/genetics , Multiple Sclerosis/genetics , N-Acetylglucosaminyltransferases/genetics , Receptors, Interleukin-2/genetics , Receptors, Interleukin-7/genetics , Adult , CTLA-4 Antigen/metabolism , Case-Control Studies , Cohort Studies , Down-Regulation , Female , Flow Cytometry , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Humans , Male , Middle Aged , Multiple Sclerosis/pathology , N-Acetylglucosaminyltransferases/metabolism , Risk Factors , T-Lymphocytes/metabolism , Young Adult
6.
Semin Immunopathol ; 34(3): 415-24, 2012 May.
Article in English | MEDLINE | ID: mdl-22488447

ABSTRACT

Autoimmune diseases such as multiple sclerosis (MS) result from complex and poorly understood interactions of genetic and environmental factors. A central role for T cells in MS is supported by mouse models, association of the major histocompatibility complex region, and association of critical T cell growth regulator genes such as interleukin-2 receptor (IL-2RA) and interleukin-7 receptor (IL-7RA). Multiple environmental factors (vitamin D(3) deficiency and metabolism) converge with multiple genetic variants (IL-7RA, IL-2RA, MGAT1, and CTLA-4) to dysregulate Golgi N-glycosylation in MS, resulting in T cell hyperactivity, loss of self-tolerance and in mice, a spontaneous MS-like disease with neurodegeneration. Here, we review the genetic and biological interactions that regulate MS pathogenesis through dysregulation of N-glycosylation and how this may enable individualized therapeutic approaches.


Subject(s)
Autoimmunity , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , T-Lymphocytes/immunology , Acyltransferases/genetics , Animals , CTLA-4 Antigen/genetics , Glycosylation , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , N-Acetylglucosaminyltransferases , Receptors, Interleukin-7/genetics
7.
J Arthroplasty ; 27(6): 1159-65.e1, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22459126

ABSTRACT

Contemporary multimodal anesthesia regimens allow the performance of unicompartment knee arthroplasty (UKA) on an outpatient basis. Our initial pilot experience is presented using a continuous femoral nerve block as an adjunct for 24 patients classified as American Society of Anesthesiology class 1 (14 men, 10 women; median age, 56 years; range, 46-72 years). After minimally invasive UKA, patients documented their pain and oral medication use while at home for the first 5 days. Adverse events, medication adverse effects, and the amount of infused ropivacaine were recorded. Median pain scores for the first 3 days were 1, 2, and 2 (at rest) and 4, 5, and 3 (during physical therapy). Eighteen patients (75%) required less than 4 mg oral hydromorphone/d. Of the 18, 10 (42%) did not require supplemental oral opioids. The median catheter use was 3 days. Our results suggest that with careful patient selection and adequate teaching, continuous femoral nerve blocks may be used as part of a multimodal pain regimen to assist the delivery of outpatient UKA with high patient satisfaction.


Subject(s)
Arthroplasty, Replacement, Knee/methods , Catheters, Indwelling , Femoral Nerve , Minimally Invasive Surgical Procedures/methods , Nerve Block/methods , Osteoarthritis, Knee/surgery , Outpatients , Pain, Postoperative/prevention & control , Administration, Oral , Aged , Amides/administration & dosage , Amides/pharmacology , Amides/therapeutic use , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacology , Anesthetics, Local/therapeutic use , Arthroplasty, Replacement, Knee/adverse effects , Combined Modality Therapy , Femoral Nerve/drug effects , Humans , Hydromorphone/administration & dosage , Hydromorphone/therapeutic use , Male , Middle Aged , Minimally Invasive Surgical Procedures/adverse effects , Pain, Postoperative/etiology , Patient Satisfaction , Patient Selection , Pilot Projects , Retrospective Studies , Ropivacaine , Treatment Outcome
8.
Nat Commun ; 2: 334, 2011.
Article in English | MEDLINE | ID: mdl-21629267

ABSTRACT

How environmental factors combine with genetic risk at the molecular level to promote complex trait diseases such as multiple sclerosis (MS) is largely unknown. In mice, N-glycan branching by the Golgi enzymes Mgat1 and/or Mgat5 prevents T cell hyperactivity, cytotoxic T-lymphocyte antigen 4 (CTLA-4) endocytosis, spontaneous inflammatory demyelination and neurodegeneration, the latter pathologies characteristic of MS. Here we show that MS risk modulators converge to alter N-glycosylation and/or CTLA-4 surface retention conditional on metabolism and vitamin D(3), including genetic variants in interleukin-7 receptor-α (IL7RA*C), interleukin-2 receptor-α (IL2RA*T), MGAT1 (IV(A)V(T-T)) and CTLA-4 (Thr17Ala). Downregulation of Mgat1 by IL7RA*C and IL2RA*T is opposed by MGAT1 (IV(A)V(T-T)) and vitamin D(3), optimizing branching and mitigating MS risk when combined with enhanced CTLA-4 N-glycosylation by CTLA-4 Thr17. Our data suggest a molecular mechanism in MS whereby multiple environmental and genetic inputs lead to dysregulation of a final common pathway, namely N-glycosylation.


Subject(s)
Multiple Sclerosis/genetics , Animals , Antigens, CD/genetics , CTLA-4 Antigen , Case-Control Studies , Cholecalciferol/metabolism , Cohort Studies , Down-Regulation , Female , Genetic Variation , Glycosylation , Haplotypes , Humans , Male , Mice , Mice, Inbred Strains , Multiple Sclerosis/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Receptors, Interleukin-2/genetics , Receptors, Interleukin-7/genetics , Risk Factors , Signal Transduction , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL
...