Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 25(12): 3466-3483, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37968789

ABSTRACT

The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.


Subject(s)
Ants , Coleoptera , Microbiota , Animals , Ants/genetics , Ants/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Larva , Bacteria/genetics , Symbiosis
2.
Nat Commun ; 9(1): 2440, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921959

ABSTRACT

The originally published version of the Supplementary Information file associated with this Article contained an error in Supplementary Figure 3. Panel b was inadvertently replaced with a duplicate of panel a. The error has now been fixed and the corrected version of the Supplementary Information PDF is available to download from the HTML version of the Article.

3.
Nat Commun ; 9(1): 964, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29511180

ABSTRACT

Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.


Subject(s)
Ants/microbiology , Ants/physiology , Gastrointestinal Microbiome , Herbivory/physiology , Nitrogen/metabolism , Amino Acids/metabolism , Ammonia/metabolism , Animals , Diet , Gastrointestinal Microbiome/genetics , Geography , Metagenome , Metagenomics , Nitrogen Fixation/genetics , Nitrogen Isotopes , Symbiosis , Urea/metabolism , Urease/metabolism , Uric Acid/metabolism
4.
Mol Ecol ; 26(14): 3808-3825, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28393425

ABSTRACT

Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16S rRNA-based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16S rRNA gene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera, Eciton, Labidus and Nomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein-coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species-specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm-founding and within-colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.


Subject(s)
Ants/microbiology , Bacteria/classification , Gastrointestinal Tract/microbiology , Microbiota , Symbiosis , Animals , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...