Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Metallomics ; 15(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37740572

ABSTRACT

Iron is accumulated symplastically in kelp in a non-ferritin core that seems to be a general feature of brown algae. Microprobe studies show that Fe binding depends on tissue type. The sea is generally an iron-poor environment and brown algae were recognized in recent years for having a unique, ferritin-free iron storage system. Kelp (Laminaria digitata) and the filamentous brown alga Ectocarpus siliculosus were investigated using X-ray microprobe imaging and nanoprobe X-ray fluorescence tomography to explore the localization of iron, arsenic, strontium, and zinc, and micro-X-ray absorption near-edge structure (µXANES) to study Fe binding. Fe distribution in frozen hydrated environmental samples of both algae shows higher accumulation in the cortex with symplastic subcellular localization. This should be seen in the context of recent ultrastructural insight by cryofixation-freeze substitution that found a new type of cisternae that may have a storage function but differs from the apoplastic Fe accumulation found by conventional chemical fixation. Zn distribution co-localizes with Fe in E. siliculosus, whereas it is chiefly located in the L. digitata medulla, which is similar to As and Sr. Both As and Sr are mostly found at the cell wall of both algae. XANES spectra indicate that Fe in L. digitata is stored in a mineral non-ferritin core, due to the lack of ferritin-encoding genes. We show that the L. digitata cortex contains mostly a ferritin-like mineral, while the meristoderm may include an additional component.


Subject(s)
Kelp , Laminaria , Phaeophyceae , Trace Elements , Kelp/metabolism , Laminaria/metabolism , X-Rays , Synchrotrons , Phaeophyceae/metabolism , Trace Elements/metabolism , Iron/metabolism , Ferritins/metabolism , Minerals/metabolism
2.
J Phys Condens Matter ; 35(16)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36764002

ABSTRACT

Local structures play a crucial role in the structural polyamorphism and novel electronic properties of amorphous materials, but their accurate measurement at high pressure remains a formidable challenge. In this article, we use the local structure of network-forming GeO2glass as an example, to present our recent approaches and advances in high-energy x-ray diffraction, high-pressure x-ray absorption fine structure, andab initiofirst-principles density functional theory calculations and simulations. Although GeO2glass is one of the best studied materials in the field of high pressure research due to its importance in glass theory and geophysical significance, there are still some long-standing puzzles, such as the existence of appreciable distinct fivefold[5]Ge coordination at low pressure and the sixfold-plus[6+]Ge coordination at ultrahigh pressure. Our work sheds light on the origin of pressure-induced polyamorphism of GeO2glass, and the[5]Ge polyhedral units may be the dominant species in the densification mechanism of network-forming glasses from tetrahedral to octahedral amorphous structures.

3.
Sci Adv ; 6(48)2020 Nov.
Article in English | MEDLINE | ID: mdl-33239296

ABSTRACT

Exchange between a magma ocean and vapor produced Earth's earliest atmosphere. Its speciation depends on the oxygen fugacity (fO2) set by the Fe3+/Fe2+ ratio of the magma ocean at its surface. Here, we establish the relationship between fO2 and Fe3+/Fe2+ in quenched liquids of silicate Earth-like composition at 2173 K and 1 bar. Mantle-derived rocks have Fe3+/(Fe3++Fe2+) = 0.037 ± 0.005, at which the magma ocean defines an fO2 0.5 log units above the iron-wüstite buffer. At this fO2, the solubilities of H-C-N-O species in the magma ocean produce a CO-rich atmosphere. Cooling and condensation of H2O would have led to a prebiotic terrestrial atmosphere composed of CO2-N2, in proportions and at pressures akin to those observed on Venus. Present-day differences between Earth's atmosphere and those of her planetary neighbors result from Earth's heliocentric location and mass, which allowed geologically long-lived oceans, in-turn facilitating CO2 drawdown and, eventually, the development of life.

4.
Environ Sci Technol ; 51(19): 11105-11114, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28850224

ABSTRACT

Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed via catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(III) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. We show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.


Subject(s)
Arsenic , Selenium , Adsorption , Ferric Compounds , Ferrous Compounds , Oxidation-Reduction
5.
Invest Ophthalmol Vis Sci ; 58(2): 708-719, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28146236

ABSTRACT

Purpose: Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods: Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results: Apparently functional primary RPE cells, when cultured on 10-µm-thick inserts with 0.4-µm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions: The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.


Subject(s)
Durapatite/metabolism , Epithelial Cells/metabolism , Pigment Epithelium of Eye/metabolism , Retinal Drusen/metabolism , Animals , Disease Models, Animal , Fluorescence , Immunohistochemistry , Macular Degeneration/metabolism , Microscopy, Electron , Pigment Epithelium of Eye/cytology , Primary Cell Culture , Spectrometry, Mass, Secondary Ion , Swine , X-Ray Diffraction
6.
Chem Commun (Camb) ; 51(42): 8868-71, 2015 May 25.
Article in English | MEDLINE | ID: mdl-25925160

ABSTRACT

Pressure-induced crystal color change of photo-magnetic materials [Ln(DMF)4(H2O)3(µ-CN)M(CN)5]·H2O, Ln = Y, M = Fe (1), Ln = Y, M = Co (2), Ln = Nd, M = Fe (3) (DMF = N,N-dimethyl formamide) are investigated using variable pressure X-ray Absorption Near-Edge Structure (XANES) spectroscopy and X-ray diffraction. For 1 the effect is caused by ligand-to-metal charge transfer (LMCT) on the iron site.

7.
J Synchrotron Radiat ; 21(Pt 6): 1224-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25343788

ABSTRACT

Data Exchange is a simple data model designed to interface, or `exchange', data among different instruments, and to enable sharing of data analysis tools. Data Exchange focuses on technique rather than instrument descriptions, and on provenance tracking of analysis steps and results. In this paper the successful application of the Data Exchange model to a variety of X-ray techniques, including tomography, fluorescence spectroscopy, fluorescence tomography and photon correlation spectroscopy, is described.

8.
Med Phys ; 40(6): 061903, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23718594

ABSTRACT

PURPOSE: X-ray fluorescence computed tomography (XFCT) is an emerging imaging modality that maps the three-dimensional distribution of elements, generally metals, in ex vivo specimens and potentially in living animals and humans. At present, it is generally performed at synchrotrons, taking advantage of the high flux of monochromatic x rays, but recent work has demonstrated the feasibility of using laboratory-based x-ray tube sources. In this paper, the authors report the development and experimental implementation of two novel imaging geometries for mapping of trace metals in biological samples with ∼50-500 µm spatial resolution. METHODS: One of the new imaging approaches involves illuminating and scanning a single slice of the object and imaging each slice's x-ray fluorescent emissions using a position-sensitive detector and a pinhole collimator. The other involves illuminating a single line through the object and imaging the emissions using a position-sensitive detector and a slit collimator. They have implemented both of these using synchrotron radiation at the Advanced Photon Source. RESULTS: The authors show that it is possible to achieve 250 eV energy resolution using an electron multiplying CCD operating in a quasiphoton-counting mode. Doing so allowed them to generate elemental images using both of the novel geometries for imaging of phantoms and, for the second geometry, an osmium-stained zebrafish. CONCLUSIONS: The authors have demonstrated the feasibility of these two novel approaches to XFCT imaging. While they use synchrotron radiation in this demonstration, the geometries could readily be translated to laboratory systems based on tube sources.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , Synchrotrons/instrumentation , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Reproducibility of Results , Sensitivity and Specificity
9.
Environ Sci Technol ; 47(5): 2361-9, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23373896

ABSTRACT

During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction.


Subject(s)
Ferrous Compounds/analysis , Ferrous Compounds/chemistry , Shewanella putrefaciens/chemistry , Uranium/chemistry , Adsorption , Biodegradation, Environmental , Electron Transport , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxidation-Reduction , Shewanella putrefaciens/metabolism , Spectroscopy, Mossbauer , Sulfides/metabolism , Uranium/metabolism , X-Ray Absorption Spectroscopy
10.
Environ Sci Technol ; 46(10): 5557-64, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22502742

ABSTRACT

Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a ± stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.


Subject(s)
Oryza/metabolism , Seeds/metabolism , Selenium/metabolism , Plant Leaves/metabolism , Plant Stems/metabolism , Synchrotrons , X-Ray Microtomography
11.
J Chem Phys ; 136(7): 074105, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22360234

ABSTRACT

An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials.

12.
Plant Physiol ; 157(4): 1914-25, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22025609

ABSTRACT

Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 µg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.


Subject(s)
Cadmium/metabolism , Carboxylic Acids/metabolism , Sedum/cytology , Sedum/metabolism , Cadmium/analysis , Cadmium/pharmacology , Calcium/metabolism , Fluorescence , Image Interpretation, Computer-Assisted , Lasers , Malates/metabolism , Mass Spectrometry/methods , Plant Epidermis/cytology , Plant Epidermis/drug effects , Plant Epidermis/metabolism , Plant Leaves/cytology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stems/cytology , Plant Stems/drug effects , Plant Stems/metabolism , Sedum/drug effects , Seedlings/cytology , Seedlings/drug effects , Seedlings/metabolism , Spectrometry, X-Ray Emission , Synchrotrons , X-Ray Absorption Spectroscopy
13.
New Phytol ; 192(1): 87-98, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21658183

ABSTRACT

• Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. • Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. • Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. • These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.


Subject(s)
Arsenic/metabolism , Oryza/metabolism , Phloem/metabolism , Plant Leaves/metabolism , Seeds/metabolism , Biological Transport , Fluorescence , Germanium/metabolism , Humans , Imaging, Three-Dimensional , X-Ray Absorption Spectroscopy , Xylem/metabolism
14.
Plant Physiol ; 152(1): 309-19, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19880610

ABSTRACT

Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a +/- stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.


Subject(s)
Arsenic/metabolism , Oryza/metabolism , Seeds/metabolism , Arsenic/analysis , Biological Transport , Cacodylic Acid/metabolism , Phloem , Seeds/chemistry , Xylem
15.
Environ Sci Technol ; 39(7): 2210-8, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15871256

ABSTRACT

This paper shows that synchrotron-based fluorescence and absorption-edge computed microtomographies (CMT) are well-suited for determining the compartmentalization and concentration of metals in hyperaccumulating plant tissues. Fluorescence CMT of intact leaf, stem, and root samples revealed that Ni concentrated in stem and leaf dermal tissues and, together with Mn, in distinct regions associated with the Ca-rich trichomes on the leaf surface of the nickel hyperaccumulator Alyssum murale "Kotodesh". Metal enrichment was also observed within the vascular system of the finer roots, stem, and leaves but absent from the coarser root, which had a well-correlated metal coating. Absorption-edge CMT showed the three-dimensional distribution of the highest metal concentrations and verified that epidermal localization and Ni and Mn co-localization at the trichome base are phenomena that occurred throughout the entire leaf and may contribute significantly to metal detoxification and storage. Ni was also observed in the leaf tips, possibly resulting from release of excess Ni with guttation fluids. These results are consistent with a transport model where Ni is removed from the soil by the finer roots, carried to the leaves through the stem xylem, and distributed throughout the leaf by the veins to the dermal tissues, trichome bases, and in some cases the leaf tips.


Subject(s)
Brassicaceae/metabolism , Metals, Heavy/pharmacokinetics , Tomography/methods , Biological Transport/physiology , Brassicaceae/physiology , Fluorescence , Microscopy, Electron, Scanning , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Roots/metabolism , Plant Stems/metabolism , Synchrotrons , Tissue Distribution , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...