Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 8(10): 7160-7168, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29081947

ABSTRACT

Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼1020 m-2 s-1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

2.
Sci Rep ; 7(1): 5761, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720839

ABSTRACT

We report on multi-level atomistic simulations for the interaction of reactive oxygen species (ROS) with the head groups of the phospholipid bilayer, and the subsequent effect of head group and lipid tail oxidation on the structural and dynamic properties of the cell membrane. Our simulations are validated by experiments using a cold atmospheric plasma as external ROS source. We found that plasma treatment leads to a slight initial rise in membrane rigidity, followed by a strong and persistent increase in fluidity, indicating a drop in lipid order. The latter is also revealed by our simulations. This study is important for cancer treatment by therapies producing (extracellular) ROS, such as plasma treatment. These ROS will interact with the cell membrane, first oxidizing the head groups, followed by the lipid tails. A drop in lipid order might allow them to penetrate into the cell interior (e.g., through pores created due to oxidation of the lipid tails) and cause intracellular oxidative damage, eventually leading to cell death. This work in general elucidates the underlying mechanisms of ROS interaction with the cell membrane at the atomic level.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phospholipids/chemistry , Reactive Oxygen Species/chemistry , Cell Membrane/metabolism , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Lipid Bilayers/metabolism , Mass Spectrometry/methods , Membrane Fluidity , Molecular Structure , Oxidation-Reduction , Phospholipids/metabolism , Reactive Oxygen Species/metabolism
3.
Biochim Biophys Acta Gen Subj ; 1861(4): 839-847, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28137619

ABSTRACT

BACKGROUND: Strong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability. METHOD: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane. RESULTS AND CONCLUSIONS: We show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage. GENERAL SIGNIFICANCE: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.


Subject(s)
Cell Membrane Permeability/physiology , Cell Membrane/physiology , Lipid Bilayers/metabolism , Electricity , Electroporation/methods , Models, Biological , Molecular Dynamics Simulation , Oxidation-Reduction , Phospholipids/metabolism , Reactive Oxygen Species/metabolism , Water/metabolism
4.
Nanoscale ; 9(4): 1653-1661, 2017 Jan 26.
Article in English | MEDLINE | ID: mdl-28074964

ABSTRACT

Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC-CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C-C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.

5.
Sci Rep ; 6: 19466, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26857381

ABSTRACT

This study reports on the possible effects of OH radical impact on the transmembrane domain 6 of P-glycoprotein, TM6, which plays a crucial role in drug binding in human cells. For the first time, we employ molecular dynamics (MD) simulations based on the self-consistent charge density functional tight binding (SCC-DFTB) method to elucidate the potential sites of fragmentation and mutation in this domain upon impact of OH radicals, and to obtain fundamental information about the underlying reaction mechanisms. Furthermore, we apply non-reactive MD simulations to investigate the long-term effect of this mutation, with possible implications for drug binding. Our simulations indicate that the interaction of OH radicals with TM6 might lead to the breaking of C-C and C-N peptide bonds, which eventually cause fragmentation of TM6. Moreover, according to our simulations, the OH radicals can yield mutation in the aromatic ring of phenylalanine in TM6, which in turn affects its structure. As TM6 plays an important role in the binding of a range of cytotoxic drugs with P-glycoprotein, any changes in its structure are likely to affect the response of the tumor cell in chemotherapy. This is crucial for cancer therapies based on reactive oxygen species, such as plasma treatment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/chemistry , Hydroxyl Radical/chemistry , Molecular Dynamics Simulation , ATP Binding Cassette Transporter, Subfamily B/genetics , Humans , Mutation/genetics , Protein Conformation
6.
Phys Chem Chem Phys ; 18(2): 792-800, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26626231

ABSTRACT

Gold nanocluster properties exhibit unique size-dependence. In this contribution, we employ reactive molecular dynamics simulations to calculate the size- and temperature-dependent surface energies, strain energies and atomic displacements for icosahedral, cuboctahedral, truncated octahedral and decahedral Au-nanoclusters. The calculations demonstrate that the surface energy decreases with increasing cluster size at 0 K but increases with size at higher temperatures. The calculated melting curves as a function of cluster size demonstrate the Gibbs-Thomson effect. Atomic displacements and strain are found to strongly depend on the cluster size and both are found to increase with increasing cluster size. These results are of importance for understanding the size- and temperature-dependent surface processes on gold nanoclusters.

7.
Phys Rev Lett ; 110(6): 065501, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432269

ABSTRACT

Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.

8.
J Chem Theory Comput ; 8(6): 1865-9, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-26593821

ABSTRACT

Uniform acceptance force biased Monte Carlo (UFMC) simulations have previously been shown to be a powerful tool to simulate atomic scale processes, enabling one to follow the dynamical path during the simulation. In this contribution, we present a simple proof to demonstrate that this uniform acceptance still complies with the condition of detailed balance, on the condition that the characteristic parameter λ = 1/2 and that the maximum allowed step size is chosen to be sufficiently small. Furthermore, the relation to Metropolis Monte Carlo (MMC) is also established, and it is shown that UFMC reduces to MMC by choosing the characteristic parameter λ = 0 [Rao, M. et al. Mol. Phys.1979, 37, 1773]. Finally, a simple example compares the UFMC and MMC methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...