Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 84(6): 1098-1105, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33405274

ABSTRACT

The main goal of the present work is to explore the three dimensional (3-D) atomic force microscopy (AFM) images of human teeth and investigating their micromorphology. For this purpose, 10 fresh and permanent canine teeth were selected from a group of 40-year-old men who were candidate for the experimental processes. Afterward, they were all applied for studying the morphology of their hard tissues. The tapping mode of AFM was used to characterize the surface micromorphology on the square areas of 1 µm × 1 µm (512 × 512 pts). AFM results and surface stereometric analysis indicate the relationships between the micromorphology of the surface and the structural properties of these tissues across the length scales. As can be seen, the surface of cementum has the most irregular topography (D = 2.87 ± 0.01) while the most regular topography (D = 2.43 ± 0.01) is found in dentin. Furthermore, the more and less regularity of the surface have been found in inner enamel (Sq = 26.26 nm) and dentin (Sq = 41.28 nm), respectively. Stereometric and fractal analyses give valuable information about human canine teeth via 3-D micromorphology.


Subject(s)
Cuspid , Dental Cementum , Adult , Dental Enamel , Dentin , Humans , Male , Microscopy, Atomic Force
2.
Microsc Res Tech ; 82(4): 421-428, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30575228

ABSTRACT

Human tooth exhibits a structure of a mixture of inorganic hydroxyapatite nanocrystals and organic phases. The aim of this study is to investigate different tissues of human canine teeth surface along with the micro structure parameters of each tissue. X-ray diffraction (XRD) is used to study the amorphous or crystalline nature of each tissue with different mineral compositions and crystalline structures where the highest crystalline quality is related to enamel. The surfaces are also examined by energy-dispersive X-ray spectrometry. Moreover, crystalline quality factor is carried out to estimate the crystallinity of the tissues. Also, based on the basic Scherrer equation, the Williamson-Hall equation is applied to extend the formula for the XRD. Enamel and cementum tissues of a typical human tooth, which look similar, are composed of a large variety of wide lines with different widths through Raman spectra analysis. In addition, the applied scanning electron microscopy extracts similar morphology for all tissues with round granular structures which are denser in the cementum. Atomic force microscopy is finally used for investigation of micro-morphologies of the different tissues and the results are compared with the fractal analysis which ends to the bifractal and anisotropic nature of enamel and cementum along with monofractal and isotropic nature of dentin.


Subject(s)
Cuspid/physiology , Cuspid/ultrastructure , Dental Cementum/ultrastructure , Dental Enamel/ultrastructure , Fractals , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman , X-Ray Diffraction
3.
Microsc Res Tech ; 81(10): 1223-1230, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30351526

ABSTRACT

The objective of this study was to evaluate the effect of two photoactivation modes of dental LED light-curing unit (LCUs) (conventional and "Soft Start" mode) on surface texture parameters of two dental resin-based nanocomposites. LED LCUs were considered as standard light-curing devices in contemporary dental practice. Atomic force microscopy (AFM) was applied to investigate surface morphology on 90 × 90 µm2 scanning area through 2D multifractal detrended fluctuation analysis with computational algorithms basis. In order to compare 3D surface roughness at nanometer scale, singularity spectrum f[α] was used which characterize local scale properties of multifractal nature of samples. The results confirmed that larger spectrum width Δα (Δα = αmax - αmin ) of f(α) is associated with non-uniform surface morphology. Moreover, materials whose polymerization was photoactivated by the "soft start" polymerization mode, showed better quality of the surface microstructure with lower values of AFM surface texture parameters.


Subject(s)
Composite Resins/chemistry , Curing Lights, Dental , Nanocomposites/chemistry , Humans , Materials Testing , Microscopy, Atomic Force , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...