Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 16: 816331, 2022.
Article in English | MEDLINE | ID: mdl-35350561

ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2968-2971, 2021 11.
Article in English | MEDLINE | ID: mdl-34891868

ABSTRACT

Functional magnetic resonance imaging (fMRI) is a powerful tool that allows for analysis of neural activity via the measurement of blood-oxygenation-level-dependent (BOLD) signal. The BOLD fluctuations can exhibit different levels of complexity, depending upon the conditions under which they are measured. We examined the complexity of both resting-state and task-based fMRI using sample entropy (SampEn) as a surrogate for signal predictability. We found that within most tasks, regions of the brain that were deemed task-relevant displayed significantly low levels of SampEn, and there was a strong negative correlation between parcel entropy and amplitude.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Entropy , Systems Analysis
3.
Front Neurosci ; 14: 550923, 2020.
Article in English | MEDLINE | ID: mdl-33041756

ABSTRACT

Resting state functional MRI (rs-fMRI) creates a rich four-dimensional data set that can be analyzed in a variety of ways. As more researchers come to view the brain as a complex dynamical system, tools are increasingly being drawn from other fields to characterize the complexity of the brain's activity. However, given that the signal measured with rs-fMRI arises from the hemodynamic response to neural activity, the extent to which complexity metrics reflect neural complexity as compared to signal properties related to image quality remains unknown. To provide some insight into this question, correlation dimension, approximate entropy and Lyapunov exponent were calculated for different rs-fMRI scans from the same subject to examine their reliability. The metrics of complexity were then compared to several properties of the rs-fMRI signal from each brain area to determine if basic signal features could explain differences in the complexity metrics. Differences in complexity across brain areas were highly reliable and were closely linked to differences in the frequency profiles of the rs-fMRI signal. The spatial distributions of the complexity and frequency metrics suggest that they are both influenced by location-dependent signal properties that can obscure changes related to neural activity.

4.
Front Neurosci ; 14: 700, 2020.
Article in English | MEDLINE | ID: mdl-32714141

ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI) is an immensely powerful method in neuroscience that uses the blood oxygenation level-dependent (BOLD) signal to record and analyze neural activity in the brain. We examined the complexity of brain activity acquired by rs-fMRI to determine whether it exhibits variation across brain regions. In this study the complexity of regional brain activity was analyzed by calculating the sample entropy of 200 whole-brain BOLD volumes as well as of distinct brain networks, cortical regions, and subcortical regions of these brain volumes. It can be seen that different brain regions and networks exhibit distinctly different levels of entropy/complexity, and that entropy in the brain significantly differs between brains at rest and during task performance.

5.
Nat Commun ; 10(1): 4777, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664017

ABSTRACT

Early diagnosis and noninvasive detection of liver fibrosis and its heterogeneity remain as major unmet medical needs for stopping further disease progression toward severe clinical consequences. Here we report a collagen type I targeting protein-based contrast agent (ProCA32.collagen1) with strong collagen I affinity. ProCA32.collagen1 possesses high relaxivities per particle (r1 and r2) at both 1.4 and 7.0 T, which enables the robust detection of early-stage (Ishak stage 3 of 6) liver fibrosis and nonalcoholic steatohepatitis (Ishak stage 1 of 6 or 1 A Mild) in animal models via dual contrast modes. ProCA32.collagen1 also demonstrates vasculature changes associated with intrahepatic angiogenesis and portal hypertension during late-stage fibrosis, and heterogeneity via serial molecular imaging. ProCA32.collagen1 mitigates metal toxicity due to lower dosage and strong resistance to transmetallation and unprecedented metal selectivity for Gd3+ over physiological metal ions with strong translational potential in facilitating effective treatment to halt further chronic liver disease progression.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Hypertension, Portal/diagnostic imaging , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Chronic Disease , Early Diagnosis , Humans
6.
Neuroimage ; 191: 193-204, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30753928

ABSTRACT

Functional connectivity is widely used to study the coordination of activity between brain regions over time. Functional connectivity in the default mode and task positive networks is particularly important for normal brain function. However, the processes that give rise to functional connectivity in the brain are not fully understood. It has been postulated that low-frequency neural activity plays a key role in establishing the functional architecture of the brain. Quasi-periodic patterns (QPPs) are a reliably observable form of low-frequency neural activity that involve the default mode and task positive networks. Here, QPPs from resting-state and working memory task-performing individuals were acquired. The spatiotemporal pattern, strength, and frequency of the QPPs between the two groups were compared and the contribution of QPPs to functional connectivity in the brain was measured. In task-performing individuals, the spatiotemporal pattern of the QPP changes, particularly in task-relevant regions, and the QPP tends to occur with greater strength and frequency. Differences in the QPPs between the two groups could partially account for the variance in functional connectivity between resting-state and task-performing individuals. The QPPs contribute strongly to connectivity in the default mode and task positive networks and to the strength of anti-correlation seen between the two networks. Many of the connections affected by QPPs are also disrupted during several neurological disorders. These findings contribute to understanding the dynamic neural processes that give rise to functional connectivity in the brain and how they may be disrupted during disease.


Subject(s)
Brain/physiology , Nerve Net/physiology , Neural Pathways/physiology , Adult , Brain Mapping/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Young Adult
7.
Curr Protoc Neurosci ; 83(1): e45, 2018 04.
Article in English | MEDLINE | ID: mdl-30040200

ABSTRACT

Resting state functional MRI (fMRI) and functional connectivity are widely applied in humans to examine the role of brain networks in normal function and dysfunction. A similar approach can be taken in rodents, either to obtain translational measures in models of brain disorders or to more carefully examine the neurophysiological underpinnings of the networks. A protocol for resting state functional connectivity in the anesthetized rat, from animal setup to data acquisition to possible pipelines for data analysis, is described. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Brain Mapping , Brain/physiology , Image Processing, Computer-Assisted , Rest/physiology , Animals , Magnetic Resonance Imaging/methods , Models, Animal , Rats , Rodentia
8.
Neuroimage ; 179: 207-214, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29908312

ABSTRACT

Optical studies of ex vivo brain slices where blood is absent show that neural activity is accompanied by significant intrinsic optical signals (IOS) related to activity-dependent scattering changes in neural tissue. However, the neural scattering signals have been largely ignored in vivo in widely-used IOS methods where absorption contrast from hemoglobin was employed. Changes in scattering were observed on a time scale of seconds in previous brain slice IOS studies, similar to the time scale for the hemodynamic response. Therefore, potential crosstalk between the scattering and absorption changes may not be ignored if they have comparable contributions to IOS. In vivo, the IOS changes linked to neural scattering have been elusive. To isolate neural scattering signals in vivo, we employed 2 implantable optodes for small-separation (2 mm) transmission measurements of local brain tissue in anesthetized rats. This unique geometry enables us to separate neuronal activity-related changes in neural tissue scattering from changes in blood absorption based upon the direction of the signal change. The changes in IOS scattering and absorption in response to up-states of spontaneous neuronal activity in cortical or subcortical structures have strong correlation to local field potentials, but significantly different response latencies. We conclude that activity-dependent neural tissue scattering in vivo may be an additional source of contrast for functional brain studies that provides complementary information to other optical or MR-based systems that are sensitive to hemodynamic contrast.


Subject(s)
Brain/physiology , Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Optical Imaging/methods , Animals , Male , Neurons/physiology , Rats , Rats, Sprague-Dawley
9.
Neuroimage ; 162: 344-352, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28823826

ABSTRACT

Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states.


Subject(s)
Brain Mapping/methods , Brain/physiology , Connectome , Humans , Magnetic Resonance Imaging , Rest
10.
Neuroimage ; 154: 267-281, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28017922

ABSTRACT

The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models. Differences in physiological baseline can also contribute to intra- and inter-subject variability. The use of anesthesia, common in animal studies, alters neural activity, vascular tone, and neurovascular coupling. Most intriguing, perhaps, are the contributions from other processes that do not appear to be neural in origin but which may provide information about other aspects of neurophysiology. This review discusses different types of noise and non-neuronal contributors to the BOLD signal, sources of variability for animal studies, and insights to be gained from animal models.


Subject(s)
Anesthesia , Functional Neuroimaging/methods , Magnetic Resonance Imaging/methods , Models, Animal , Animals
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 61-64, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268281

ABSTRACT

The brain is inherently multiscalar in both space and time. We argue that this multiscalar nature is reflected in the blood oxygenation level dependent (BOLD) fluctuations used to map functional connectivity. We present evidence that global fluctuations in activity, quasiperiodic spatiotemporal patterns, and aperiodic time-varying activity coexist within the BOLD signal. These processes can be separated using careful analysis and appear to reflect electrical activity on similar scales, suggesting that the BOLD signal fluctuations can provide novel insight into the functional architecture of the brain.


Subject(s)
Brain/physiology , Magnetic Resonance Imaging/methods , Oxygen/blood , Brain Mapping/methods , Humans , Linear Models , Models, Biological , Rest/physiology , Signal Processing, Computer-Assisted , Spatio-Temporal Analysis
12.
Biosens Bioelectron ; 53: 316-23, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24176966

ABSTRACT

Neural interfaces aim to restore neurological function lost during disease or injury. Novel implantable neural interfaces increasingly capitalize on novel materials to achieve microscale coupling with the nervous system. Like any biomedical device, neural interfaces should consist of materials that exhibit biocompatibility in accordance with the international standard ISO10993-5, which describes in vitro testing involving fibroblasts where cytotoxicity serves as the main endpoint. In the present study, we examine the utility of living neuronal networks as functional assays for in vitro material biocompatibility, particularly for materials that comprise implantable neural interfaces. Embryonic mouse cortical tissue was cultured to form functional networks where spontaneous action potentials, or spikes, can be monitored non-invasively using a substrate-integrated microelectrode array. Taking advantage of such a platform, we exposed established positive and negative control materials to the neuronal networks in a consistent method with ISO 10993-5 guidance. Exposure to the negative controls, gold and polyethylene, did not significantly change the neuronal activity whereas the positive controls, copper and polyvinyl chloride (PVC), resulted in reduction of network spike rate. We also compared the functional assay with an established cytotoxicity measure using L929 fibroblast cells. Our findings indicate that neuronal networks exhibit enhanced sensitivity to positive control materials. In addition, we assessed functional neurotoxicity of tungsten, a common microelectrode material, and two conducting polymer formulations that have been used to modify microelectrode properties for in vivo recording and stimulation. These data suggest that cultured neuronal networks are a useful platform for evaluating the functional toxicity of materials intended for implantation in the nervous system.


Subject(s)
Biocompatible Materials/toxicity , Biosensing Techniques/methods , Neurons/drug effects , Polyethylene/isolation & purification , Action Potentials , Animals , Cell Survival/drug effects , Cells, Cultured , Electrophysiology , Fibroblasts , Mice , Nervous System/drug effects , Polyethylene/toxicity , Polymers/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...