Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 20(16): 3411-3424, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38506840

ABSTRACT

Hexapods, consisting of three mutually orthogonal arms, have been utilized as a representative nonconvex shape to demonstrate the impact of interlocking on the strength properties of granular materials. Nevertheless, the microstructural characteristics of hexapod packings, which underlie their strength, have remained insufficiently characterized. We use particle dynamics simulations to build isotropically-packed aggregates of hexapods and we analyze the effects of aspect ratio and interparticle friction on the microstructure and force transmission. We find that the packing fraction is an unmonotonic function of aspect ratio due to competition between steric exclusions and interlocking. Interestingly, the contact coordination number declines considerably with friction coefficient, showing the stronger effect of friction on the stability of hexapod packings as compared with sphere packings. The pair distribution functions show that local ordering due to steric exclusions disappears beyond the aspect ratio 3 and the hexapods touch their second neighbors. Remarkably, hexapods of aspect ratio 3 tend to align with their neighbors and form locally ordered structures, implying a contact coordination number which is highly sensitive to the confining pressure. We also show that the probability density function of forces between hexapods is similar to that of sphere packings but with broadening exponential fall-off of strong forces as aspect ratio increases. Finally, the elastic bulk modulus of the aggregates is found to increase considerably with aspect ratio as a consequence of the rapid increase of contact density and the number of contacts with second neighbors.

2.
Phys Rev E ; 101(3-1): 032906, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289997

ABSTRACT

We use particle dynamics simulations to investigate the evolution of a wet agglomerate inside homogeneous shear flows of dry particles. The agglomerate is modeled by introducing approximate analytical expressions of capillary and viscous forces between particles in addition to frictional contacts. During shear flow, the agglomerate may elongate, break, or be eroded by loss of its capillary bonds and primary particles. By systematically varying the shear rate and surface tension of the binding liquid, we characterize the rates of these dispersion modes. All the rates increase with increasing inertial number of the flow and decreasing cohesion index of the agglomerate. We show that the data points for each mode collapse on a master curve for a dimensionless scaling parameter that combines the inertial number and the cohesion index. The erosion rate vanishes below a cutoff value of the scaling parameter. This leads to a power-law borderline between the vanishing erosion states and erosion states in the phase space defined by the inertial number and the cohesion index.

3.
Nat Commun ; 11(1): 1476, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193385

ABSTRACT

Granular flows are omnipresent in nature and industrial processes, but their rheological properties such as apparent friction and packing fraction are still elusive when inertial, cohesive and viscous interactions occur between particles in addition to frictional and elastic forces. Here we report on extensive particle dynamics simulations of such complex flows for a model granular system composed of perfectly rigid particles. We show that, when the apparent friction and packing fraction are normalized by their cohesion-dependent quasistatic values, they are governed by a single dimensionless number that, by virtue of stress additivity, accounts for all interactions. We also find that this dimensionless parameter, as a generalized inertial number, describes the texture variables such as the bond network connectivity and anisotropy. Encompassing various stress sources, this unified framework considerably simplifies and extends the modeling scope for granular dynamics, with potential applications to powder technology and natural flows.

4.
Soft Matter ; 16(3): 679-687, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31815275

ABSTRACT

The uni-axial compaction of granular materials made of elastic neo-Hookean particles is investigated in the quasi-static regime. Two-dimensional disk assemblies are simulated using the Finite Element model coupled with Contact Dynamics method for dealing both with finite deformations of the particles and contact interactions. Due to large deformations of the particles, the packing fraction of the system increases continuously during the compaction process, reaching values close to 1. The influence of the coefficient of friction between the particles on the macroscopic and micro-structural behaviors of the system is thoroughly discussed.

5.
Eur Phys J E Soft Matter ; 42(9): 127, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31559501

ABSTRACT

In order to get insight into the wet agglomeration process, we numerically investigate the growth of a single granule inside a dense flow of an initially homogeneous distribution of wet and dry particles. The simulations are performed by means of the discrete element method and the binding liquid is assumed to be transported by the wet particles, which interact via capillary and viscous force laws. The granule size is found to be an exponential function of time, reflecting the conservation of the amount of liquid and the decrease of the number of available wet particles inside the flow during agglomeration. We analyze this behavior in terms of the accretion and erosion rates of wet particles for a range of different values of material parameters such as mean particle size, size polydispersity, friction coefficient and liquid viscosity. In particular, we propose a phase diagram of the granule growth as a function of the mean primary particle diameter and particle size span, which separates the parametric domain in which the granule grows from the domain in which the granule does not survive.

6.
Phys Rev E ; 99(6-1): 062903, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330616

ABSTRACT

Using the contact dymanics method together with the finite element method, we simulate the uniaxial compression of assemblies of elastic cylinders. The numerical model accounts for finite deformations of the particles through the neo-Hookean constitutive equation and solid friction between the particles. A quantitative comparison with experiments carried out with centimetric rubberlike cylinders, with local deformations of the particles determined by image correlation, is proposed. We show that the simulations accurately capture the details of both the microstructure and the macroscopic behavior of the real granular system, demonstrating the relevancy of the numerical approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...