Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Avian Dis ; 68(1): 56-64, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687109

ABSTRACT

Intestinal health is one of the key factors required for the growth and production of turkeys. Histomoniasis (blackhead disease), caused by a protozoan parasite, Histomonas meleagridis, is a reemerging threat to the turkey industry. Increased incidences of histomoniasis have been reported in recent years due to withdrawal of antihistomonas treatments. H. meleagridis affects ceca and causes cecal inflammation and necrosis. H. meleagridis migrates from ceca to the liver and causes liver necrosis, resulting in high mortalities. Ironically, field outbreaks of histomoniasis are not always associated with high mortalities, while low mortalities have also been documented. There are several exacerbating factors associated with high mortality rates in histomoniasis outbreaks, with concurrent infection being one of them. Recurrent histomoniasis outbreaks in a newly constructed barn were documented, and concurrent infection of H. meleagridis and hemorrhagic enteritis virus was confirmed. Currently, neither commercial vaccines nor prophylactic or therapeutic solutions are available to combat histomoniasis. However, there are treatments, vaccines, and solutions to minimize or prevent concurrent infections in turkeys. In addition to implementing biosecurity measures, measures to prevent concurrent infections are critical steps that the turkey industry can follow to reduce mortality rates and minimize the production and economic losses associated with histomoniasis outbreaks.


Infección simultánea por Histomonas meleagridis y el virus de la enteritis hemorrágica en una parvada de pavos con antecedentes recurrentes de enfermedad de la cabeza negra. La salud intestinal es uno de los factores clave necesarios para el crecimiento y producción de los pavos. La histomoniasis (enfermedad de la cabeza negra), causada por un parásito protozoario, Histomonas meleagridis, es una amenaza reemergente para la industria del pavo. En los últimos años se ha informado de un aumento de la incidencia de histomoniasis debido al retiro de los tratamientos con antihistomonas. Histomonas meleagridis afecta los ciegos y causa inflamación y necrosis cecal. Histomonas meleagridis migra desde los ciegos al hígado y causa necrosis hepática, lo que resulta en una alta mortalidad. Irónicamente, los brotes de histomoniasis en el campo no siempre se asocian con una mortalidad elevada, aunque también se han documentado mortalidades bajas. Hay varios factores exacerbantes asociados con altas tasas de mortalidad en los brotes de histomoniasis, siendo la infección concurrente uno de ellos. Se documentaron brotes recurrentes de histomoniasis en un alojamiento avícola recién construido y se confirmó la infección concurrente de H. meleagridis y el virus de la enteritis hemorrágica. Actualmente no se dis-pone de vacunas comerciales ni soluciones profilácticas o terapéuticas para combatir la histomoniasis. Sin embargo, existen tratamientos, vacunas y soluciones para minimizar o prevenir infecciones concurrentes en los pavos. Además de implementar medidas de bioseguridad, las medidas para prevenir infecciones concurrentes son pasos críticos que la industria del pavo puede seguir para reducir las tasas de mortalidad y minimizar las pérdidas económicas y de producción asociadas con los brotes de histomoniasis.


Subject(s)
Poultry Diseases , Trichomonadida , Turkeys , Animals , Poultry Diseases/virology , Poultry Diseases/parasitology , Trichomonadida/isolation & purification , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Coinfection/veterinary , Coinfection/virology , Coinfection/parasitology , Disease Outbreaks/veterinary , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology
2.
Poult Sci ; 101(10): 102009, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952599

ABSTRACT

Colibacillosis in poultry is a unique disease manifestation of Escherichia coli in the animal world, as one of the primary routes of entry is via the respiratory tract of birds. Because of this, a novel extraintestinal pathogenic E. coli (ExPEC) subpathotype coined avian pathogenic E. coli (or APEC) has been described. Like other ExPEC, this pathotype has been challenging to clearly define, and in the case of APEC, its role as an opportunistic pathogen has further complicated these challenges. Using 3,479 temporally matched genomes of poultry-source isolates, we show that the APEC plasmid, previously considered a defining trait of APEC, is highly prevalent in clinical isolates from diseased turkeys. However, the plasmid is also quite prevalent among cecal E. coli isolates from healthy birds, including both turkeys and broilers. In contrast, we identify distinct differences in clonal backgrounds of turkey clinical versus cecal strains, with a subset of sequence types (STs) dominating the clinical landscape (ST23, ST117, ST131, ST355, and ST428), which are rare within the cecal landscape. Because the same clinical STs have also dominated the broiler landscape, we performed lethality assays using strains from dominant STs from clinical or cecal landscapes in embryonated turkey and chicken eggs. We show that, irrespective of plasmid carriage, dominant clinical STs are significantly more virulent than dominant cecal STs. We present a revised APEC screening tool that incorporates APEC plasmid carriage plus markers for dominant clinical STs. This revised APEC pathotyping tool improves the ability to identify high-risk APEC clones within poultry production systems, and identifies STs of interest for mitigation targets.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Poultry Diseases , Animals , Chickens , Escherichia coli , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Phylogeny , Poultry , Turkeys , Virulence
3.
Avian Dis ; 65(3): 474-482, 2021 09.
Article in English | MEDLINE | ID: mdl-34699146

ABSTRACT

The 2015 highly pathogenic avian influenza (HPAI) H5N2 outbreak affected more than 200 Midwestern U.S. poultry premises. Although each affected poultry operation incurred substantial losses, some operations of the same production type and of similar scale had differences between one another in their ability to recognize evidence of the disease before formal diagnoses and in their ability to make proactive, farm-level disease containment decisions. In this case comparison study, we examine the effect of HPAI infection on two large egg production facilities and the epidemiologic and financial implications resulting from differences in detection and decision-making processes. Each egg laying facility had more than 1 million caged birds distributed among 18 barns on one premises (Farm A) and 17 barns on the other premises (Farm B). We examine how farm workers' awareness of disease signs, as well as how management's immediate or delayed decisions to engage in depopulation procedures, affected flock mortality, levels of environmental contamination, time intervals for re population, and farm profits on each farm. By predictive mathematical modeling, we estimated the time of virus introduction to examine how quickly infection was identified on the farms and then estimated associated contact rates within barns. We found that the farm that implemented depopulation immediately after detection of abnormal mortality (Farm A) was able to begin repopulation of barns 37 days sooner than the farm that began depopulation well after the detection of abnormally elevated mortality (Farm B). From average industry economic data, we determined that the loss associated with delayed detection using lost profit per day in relation to down time was an additional $3.3 million for Farm B when compared with Farm A.


Estudio retrospectivo de detección viral temprana y tardía y despoblación en granjas de gallinas de postura infectadas con el virus de la influenza aviar altamente patógeno durante el brote de H5N2 del año 2015 en los Estados Unidos. El brote de influenza aviar altamente patógena (HPAI) H5N2 del año 2015 afectó a más de 200 granjas avícolas del medio oeste de los Estados Unidos. Aunque cada operación avícola afectada incurrió en pérdidas sustanciales, algunas operaciones del mismo tipo de producción y de escala similar tuvieron diferencias entre sí en su capacidad para reconocer evidencias de la enfermedad antes de los diagnósticos formales y en su capacidad para realizar decisiones proactivas para la contención de la enfermedad a nivel de granja. En este estudio de caso, se examinó el efecto de la infección por influenza aviar altamente patógena en dos instalaciones grandes de producción de huevo y las implicaciones epidemiológicas y financieras que fueron resultado de los diferentes procesos de detección y toma de decisiones. Cada instalación de postura de huevo tenía más de un millón de aves enjauladas distribuidas en 18 casetas en una granja (Granja A) y 17 casetas en las otras instalaciones (Granja B). Se examinó cómo el conocimiento de los trabajadores agrícolas sobre los signos de la enfermedad, así como cómo las decisiones de manejo inmediatas o tardías para establecer procedimientos de despoblación, afectaron la mortalidad de las parvadas, los niveles de contaminación ambiental, los intervalos de tiempo para la repoblación y las ganancias en cada granja. Mediante un modelo matemático predictivo, se estimó el tiempo de introducción del virus para examinar la rapidez con la que se identificó la infección en las granjas y luego se estimaron las tasas de contacto asociadas dentro de las casetas. Se encontró que la granja que implementó la despoblación inmediatamente después de la detección de mortalidad anormal (Granja A) pudo comenzar la repoblación de las casetas 37 días antes que la granja que comenzó la despoblación mucho después de la detección de mortalidad anormalmente elevada (Granja B). A partir de los datos económicos promedio de la industria, se determinó que la pérdida asociada con la detección tardía utilizando las pérdidas de ganancias por día en relación con el tiempo de inactividad fue de $3.3 millones adicionales para la Granja B en comparación con la Granja A.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens , Disease Outbreaks/veterinary , Farms , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Retrospective Studies , United States/epidemiology
4.
Avian Dis ; 65(1): 63-66, 2021 03.
Article in English | MEDLINE | ID: mdl-34339124

ABSTRACT

Minnesota is the leading state in number of turkeys produced in the United States. Turkey flocks in the field are usually vaccinated several times with live avian orthoavulavirus 1 (AOAV-1) vaccines starting as early as 2 wk of age (WOA). During the years 2018-2019, many turkey flocks were diagnosed with low-virulence AOAV-1 infection around 9 WOA that led to respiratory disease, although they were previously vaccinated. This study was designed to investigate the immunity against AOAV-1 in Minnesota turkey flocks in the field and experimentally after vaccination. We reviewed antibody titers against AOAV-1 from turkey flocks tested by ELISA at Minnesota Poultry Testing Laboratory (n = 1292). Up to 9 WOA, more than 85% of the field flocks tested had unprotective antibody titers against AOAV-1. However, commercial poults at 3 WOA experimentally vaccinated by eye-drop method had an ELISA geometric mean titer of 6011 at 7 WOA. Oropharyngeal virus shedding after vaccination was 10%, 70%, 80%, and 40% at 1, 3, 5, and 7 days postvaccination, respectively. This study demonstrates that experimentally vaccinated turkeys respond very well to AOAV-1 vaccine when properly administered. However, there is clear vaccination failure in the field, where vaccine is commonly administered in drinking water, a method that is more susceptible to failure because of many variables in this procedure. We recommend choosing the most effective method of vaccine administration. Given the high incidence of inadequate immunity induced in commercial turkeys on mass application of live AOAV-1 vaccines in water, alternative application methods and subsequent monitoring of the serologic antibody response must be undertaken to ensure a proper immune response.


Artículo regular­Fracaso de la vacunación contra el Orthoavulavirus aviar 1 en pavos de Minnesota. Minnesota es el estado líder en número de pavos producidos en los Estados Unidos. Las parvadas de pavos en el campo generalmente se vacunan varias veces con vacunas vivas con Orthoavulavirus Aviar 1 (AOAV-1) comenzando desde las 2 semanas de edad (WOA). Durante los años 2018­2019, muchas parvadas de pavos fueron diagnosticadas con infección por Orthoavulavirus Aviar 1 de baja virulencia alrededor de las nueve semanas de edad que condujeron a una enfermedad respiratoria, aunque las aves fueron vacunadas previamente. Este estudio fue diseñado para investigar la inmunidad contra Orthoavulavirus Aviar 1 en parvadas de pavos de Minnesota en el campo y experimentalmente después de la vacunación. Se revisaron los títulos de anticuerpos contra Orthoavulavirus Aviar 1 de parvadas de pavos analizados por ELISA en el Laboratorio de Diagnóstico Avícola de Minnesota (n = 1292). Hasta las nueve semanas de edad, más del 85% de las parvadas de campo analizadas tenían títulos de anticuerpos no protectores contra Orthoavulavirus Aviar 1. Sin embargo, los pavipollos comerciales a las tres semanas de edad vacunados experimentalmente por el método de gota ocular tenían un título medio geométrico de ELISA de 6011 a las siete semanas de edad. La diseminación del virus orofaríngeo después de la vacunación fue del 10%, 70%, 80% y 40% a los 1, 3, 5 y 7 días después de la vacunación, respectivamente. Este estudio demuestra que los pavos vacunados experimentalmente respondieron muy bien a la vacuna con Orthoavulavirus Aviar 1 cuando se administra correctamente. Sin embargo, existe un claro fracaso de la vacunación en el campo, donde la vacuna se administra comúnmente en el agua potable, un método que es más susceptible al fracaso debido a muchas variables en este procedimiento. Se recomienda elegir el método de administración de vacunas más eficaz. Considerando la alta incidencia de inmunidad inadecuada inducida en pavos comerciales con la aplicación masiva de vacunas vivas con Orthoavulavirus Aviar 1 en agua, se deben llevar a cabo métodos de aplicación alternativos y monitoreo posterior de la respuesta de anticuerpos serológicos para asegurar una respuesta inmune adecuada.


Subject(s)
Avulavirus Infections/veterinary , Avulavirus/drug effects , Poultry Diseases/prevention & control , Treatment Failure , Turkeys , Vaccination/veterinary , Viral Vaccines/administration & dosage , Animals , Avulavirus Infections/prevention & control , Avulavirus Infections/virology , Minnesota , Poultry Diseases/virology
5.
Avian Dis ; 65(2): 219-226, 2021 06.
Article in English | MEDLINE | ID: mdl-34412451

ABSTRACT

Movement and land application of manure is a known risk factor for secondary spread of avian influenza viruses. During an outbreak of highly pathogenic avian influenza (HPAI), movement of untreated (i.e., fresh) manure from premises known to be infected is prohibited. However, moving manure from apparently healthy (i.e., clinically normal) flocks may be critical, because some egg-layer facilities have limited on-site storage capacity. The objective of this analysis was to evaluate targeted dead-bird active surveillance real-time reverse transcriptase polymerase chain reaction (rRT-PCR) testing protocols that could be used for the managed movement of manure from apparently healthy egg-layer flocks located in an HPAI control area. We also evaluated sequestration, which is the removal of manure from any contact with chickens, or with manure from other flocks, for a period of time, while the flock of origin is actively monitored for the presence of HPAI virus. We used stochastic simulation models to predict the chances of moving a load of contaminated manure, and the quantity of HPAI virus in an 8 metric ton (8000 kg) load of manure moved, before HPAI infection could be detected in the flock. We show that the likelihood of moving contaminated manure decreases as the length of the sequestration period increases from 3 to 10 days (e.g., for a typical contact rate, with a sample pool size of 11 swabs, the likelihood decreased from 48% to <1%). The total quantity of feces from HPAI-infectious birds in a manure load moved also decreases. Results also indicate that active surveillance protocols using 11 swabs per pool result in a lower likelihood of moving contaminated manure relative to protocols using five swabs per pool. Simulation model results from this study are useful to inform further risk evaluation of HPAI spread through pathways associated with manure movement and further evaluation of biosecurity measures intended to reduce those risks.


Artículo regular­Estrategias de vigilancia y aislamiento para reducir la probabilidad de transportar gallinaza de aves de postura contaminada con virus de influenza aviar altamente patógeno. El movimiento y la aplicación de gallinaza a la tierra es un factor de riesgo conocido para la propagación secundaria de los virus de la influenza aviar (IA). Durante un brote de influenza aviar altamente patógena (IAAP), se prohíbe el movimiento de gallinaza sin tratar (es decir, fresco) de las instalaciones que se conoce que están infectadas. Sin embargo, el traslado de gallinaza de parvadas aparentemente sanas (es decir, clínicamente normales) puede ser fundamental, porque algunas instalaciones de producción de huevo tienen una capacidad limitada de almacenamiento en el lugar. El objetivo de este análisis estaba evaluar los protocolos de la prueba de transcriptasa reversa y reacción en cadena de la polimerasa en tiempo real (rRT-PCR) utilizados en la vigilancia activa dirigida a aves muertas, que podrían usarse para el movimiento controlado de gallinaza de parvadas de postura aparentemente sanas ubicadas en un área de control para influenza aviar de alta patogenicidad. También se evaluó el aislamiento, que es la remoción de gallinaza y prevenir cualquier contacto con pollos, o con gallinaza de otras parvadas, durante un período de tiempo, mientras que la parvada de origen es monitoreada activamente para detectar la presencia del virus de la influenza aviar altamente patógeno. Se utilizaron modelos de simulación estocástica para predecir las posibilidades de trasladar una carga de estiércol contaminado y la cantidad de virus de la influenza aviar altamente patógeno en una carga de ocho toneladas métricas (8000 kg) de gallinaza trasladada, antes de que se pudiera detectar la infección por influenza aviar altamente patógena en la parvada. Se demostró que la probabilidad de mover gallinaza contaminada disminuye a medida que la duración del período de aislamiento aumenta de tres a diez días (por ejemplo, para una tasa de contacto típica, con un tamaño de muestra de 11 hisopos, la probabilidad disminuyó de 48% a <1 %). La cantidad total de heces de aves infectadas por la influenza aviar altamente patógena en una carga de gallinaza transportada también disminuye. Los resultados también indican que los protocolos de vigilancia activa que utilizan 11 hisopos como muestra agrupada dan como resultado una menor probabilidad de mover gallinaza contaminada en comparación con los protocolos que utilizan cinco hisopos por muestra agrupada. Los resultados del modelo de simulación de este estudio son útiles para una evaluación adicional del riesgo de la propagación de la influenza aviar altamente patógena a través de vías asociadas con el movimiento de gallinaza y una evaluación adicional de las medidas de bioseguridad destinadas a reducir esos riesgos.


Subject(s)
Chickens/virology , Influenza A virus/pathogenicity , Influenza in Birds/transmission , Manure/virology , Medical Waste Disposal/methods , Animals , Computer Simulation , Influenza A virus/isolation & purification , Influenza in Birds/prevention & control , Medical Waste Disposal/standards , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Stochastic Processes
6.
PLoS One ; 16(4): e0249138, 2021.
Article in English | MEDLINE | ID: mdl-33822782

ABSTRACT

Pasteurella multocida is a bacterial pathogen with the ability to infect a multitude of hosts including humans, companion animals, livestock, and wildlife. This study used bioinformatic approaches to explore the genomic diversity of 656 P. multocida isolates and epidemiological associations between host factors and specific genotypes. Isolates included in this study originated from a variety of hosts, including poultry, cattle, swine, rabbits, rodents, and humans, from five different continents. Multi-locus sequence typing identified 69 different sequence types. In-silico methodology for determining capsular serogroup was developed, validated, and applied to all genome sequences, whereby capsular serogroups A, B, D, and F were found. Whole genome phylogeny was constructed from 237,670 core single nucleotide variants (SNVs) and demonstrated an overall lack of host or capsular serogroup specificity, with the exception of isolates from bovine sources. Specific SNVs within the srlB gene were identified in P. multocida subsp. septica genomes, representing specific mutations that may be useful for differentiating one of the three known subspecies. Significant associations were identified between capsular serogroup and virulence factors, including capsular serogroup A and OmpH1, OmpH3, PlpE, and PfhB1; capsular serogroup B and HgbA and PtfA; and capsular serogroup F and PtfA and PlpP. Various mobile genetic elements were identified including those similar to ICEPmu1, ICEhin1056, and IncQ1 plasmids, all of which harbored multiple antimicrobial resistance-encoding genes. Additional analyses were performed on a subset of 99 isolates obtained from turkeys during fowl cholera outbreaks from a single company which revealed that multiple strains of P. multocida were circulating during the outbreak, instead of a single, highly virulent clone. This study further demonstrates the extensive genomic diversity of P. multocida, provides epidemiological context to the various genotyping schemes that have traditionally been used for differentiating isolates, and introduces additional tools for P. multocida molecular typing.


Subject(s)
Genes, Bacterial , Pasteurella multocida/genetics , Polymorphism, Single Nucleotide , Animals , Bacterial Outer Membrane Proteins/genetics , DNA Transposable Elements , Drug Resistance, Bacterial , Pasteurella Infections/epidemiology , Pasteurella Infections/microbiology , Pasteurella multocida/isolation & purification , Pasteurella multocida/pathogenicity , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Serogroup , Turkeys/microbiology , Virulence Factors/genetics
7.
Avian Dis ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33647945

ABSTRACT

Movement and land application of manure is a known risk factor for secondary spread of avian influenza (AI) viruses. During an outbreak of highly pathogenic avian influenza (HPAI), movement of untreated (i.e., fresh) manure from premises known to be infected would be prohibited. However, moving manure from apparently healthy (i.e., clinically normal) flocks may become critical, because some egg-layer facilities have limited on-site storage capacity. The objective of this analysis was to evaluate targeted dead-bird active surveillance rRT-PCR (real-time reverse transcriptase polymerase chain reaction) testing protocols that could be used for the managed movement of manure from apparently healthy egg-layer flocks located in a HPAI Control Area. We also evaluated sequestration, which is the removal of manure from any contact with chickens, or with manure from other flocks, for a period of time, while the flock of origin is actively monitored for the presence of HPAI virus. We used stochastic simulation models to predict the chances of moving a load of contaminated manure, and the quantity of HPAI virus in an 8 metric ton (8000 kg) load of manure moved, before HPAI infection would be detected in the flock. We show that the likelihood of moving contaminated manure would decrease as the length of the sequestration period increased from 3 to 10 days (e.g., for a typical contact rate, with a sample pool size of 11 swabs, the likelihood decreased from 48% to <1%). The total quantity of feces from HPAI infectious birds in a manure load moved would also decrease. Results also indicate that active surveillance protocols using 11 swabs per-pool result in a lower likelihood of moving contaminated manure relative to protocols using 5 swabs per pool. Simulation model results from this study are useful to inform further risk evaluation of HPAI spread through pathways associated with the manure movement, and further evaluation of biosecurity measures intended to reduce those risks.

8.
Appl Environ Microbiol ; 86(11)2020 05 19.
Article in English | MEDLINE | ID: mdl-32245763

ABSTRACT

Ornithobacterium rhinotracheale is a causative agent of respiratory tract infections in avian hosts worldwide but is a particular problem for commercial turkey production. Little is known about the ecologic and evolutionary dynamics of O. rhinotracheale, which makes prevention and control of this pathogen a challenge. The purpose of this study was to gain insight into the genetic relationships between O. rhinotracheale populations through comparative genomics of clinical isolates from different U.S. turkey producers. O. rhinotracheale clinical isolates were collected from four major U.S. turkey producers and several independent turkey growers from the upper Midwest and Southeast, and whole-genome sequencing was performed. Genomes were compared phylogenetically using single nucleotide polymorphism (SNP)-based analysis, and then assembly and annotations were performed to identify genes encoding putative virulence factors and antimicrobial resistance determinants. A pangenome approach was also used to establish a core set of genes consistently present in O. rhinotracheale and to highlight differences in gene content between phylogenetic clades. A total of 1,457 nonrecombinant SNPs were identified from 157 O. rhinotracheale genomes, and four distinct phylogenetic clades were identified. Isolates clustered by company on the phylogenetic tree, however, and each company had isolates in multiple clades with similar collection dates, indicating that there are multiple O. rhinotracheale strains circulating within each of the companies examined. Additionally, several antimicrobial resistance proteins, putative virulence factors, and the pOR1 plasmid were associated with particular clades and multilocus sequence types, which may explain why the same strains seem to have persisted in the same turkey operations for decades.IMPORTANCE The whole-genome approach enhances our understanding of evolutionary relationships between clinical Ornithobacterium rhinotracheale isolates from different commercial turkey producers and allows for identification of genes associated with virulence, antimicrobial resistance, or mobile genetic elements that are often excluded using traditional typing methods. Additionally, differentiating O. rhinotracheale isolates at the whole-genome level may provide insight into selection of the most appropriate autogenous vaccine strain, or groups of strains, for a given population of clinical isolates.


Subject(s)
Genome, Bacterial , Ornithobacterium/genetics , Turkeys/microbiology , Animal Husbandry , Animals , Cross-Sectional Studies , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary , Midwestern United States , Poultry Diseases/microbiology , Retrospective Studies , Southeastern United States
9.
Avian Dis ; 63(1): 17-23, 2019 03 01.
Article in English | MEDLINE | ID: mdl-31251515

ABSTRACT

We have examined a variety of sampling strategies for detecting pathogens in turkey flocks undergoing infections with low pathogenicity avian influenza virus (LPAIV). We found that viral RNA was widely distributed in the barn environment of turkey flocks undergoing an active LPAIV infection and was in both water and drinker biofilm samples. Viral RNA was concentrated in drinker biofilm and sediment and was detectable using real-time reverse-transcription polymerase chain reaction (RRT-PCR) and by virus isolation. Drinker biofilm sample results correlated with concurrently collected oropharyngeal (OP) sample results from flocks on a farm with LPAI in which the two sampling strategies were directly compared. To evaluate the utility of biofilm sampling for the detection of highly pathogenic avian influenza virus (HPAIV), biofilm and OP swabs from mortality pools were collected daily from negative turkey flocks on an HPAI-positive premise. The biofilm swabs were positive 1-2 days prior to positives appearing in the OP sample pools. The drinker biofilm sampling strategy overcame the difficulty of finding a subclinical infectious bird in a population by collecting material from a large number of individuals and testing a sample in which a positive signal persists for several days to weeks. The sampling method is convenient for use in turkey barns and has been reliably used in both active and passive surveillance programs for LPAIV and HPAIV using RRT-PCR.


Muestreo ambiental para el virus de influenza A en casetas de pavos. Se han examinado una variedad de estrategias de muestreo para detectar patógenos en parvadas de pavos que sufren infecciones con el virus de la influenza aviar de baja patogenicidad (con las siglas en inglés LPAIV). Se encontró que el ARN viral se distribuyó ampliamente en el ambiente de las casetas con parvadas de pavos con infección activa por el virus de la influenza aviar de baja patogenicidad y se determinó tanto en muestras de agua como en muestras de la biopelícula de bebederos. El ARN viral se concentró en la biopelícula y en el sedimento de bebederos y se detectó mediante transcripción reversa y reacción en cadena de la polimerasa en tiempo real (RRT-PCR) y mediante el aislamiento del virus. Los resultados de la muestra de la biopelícula del bebedero se correlacionaron con los resultados de la muestra orofaríngea (OP) colectada de forma simultánea de parvadas en una granja con influenza aviar de baja patogenicidad en las que se compararon directamente las dos estrategias de muestreo. Para evaluar la utilidad del muestreo de la biopelícula para la detección del virus de la influenza aviar altamente patógena (HPAIV), se recolectaron diariamente biopelículas e hisopos orofaríngeos de grupos de mortalidad de parvadas de pavos negativas en una granja positiva para la influenza aviar de alta patogenicidad. Los hisopos de biopelículas fueron positivos de uno a dos días antes de que aparecieran resultados positivos en las muestras orofaríngeas agrupadas. La estrategia de muestreo de la biopelícula del bebedero eliminó la dificultad de encontrar un ave infectada subclínicamente en una población al recolectar material de un gran número de individuos y analizar una muestra en la que persiste una señal positiva durante varios días o semanas. El método de muestreo es adecuado para su uso en casetas de pavos y se ha utilizado de manera confiable en los programas de vigilancia activa y pasiva para el virus de influenza aviar tanto de baja como de alta patogenicidad utilizando transcripción reversa y reacción en cadena de la polimerasa en tiempo real.


Subject(s)
Biofilms , Environmental Monitoring/methods , Influenza A virus/isolation & purification , Influenza in Birds/virology , Poultry Diseases/virology , Turkeys , Animal Husbandry , Animals , Environmental Monitoring/instrumentation
10.
Avian Dis ; 62(4): 373-380, 2018 12 01.
Article in English | MEDLINE | ID: mdl-31119921

ABSTRACT

Respiratory secretions, feces, feathers, and eggs of avian influenza-infected hens provide ample sources of virus which heavily contaminate barn and farm environments during a disease outbreak. Environmental sampling surveys were conducted in the Midwestern United States on affected farms during the 2015 H5N2 highly pathogenic avian influenza (HPAI) outbreak to assess the degree of viral contamination. A total of 930 samples were obtained from various sites inside and outside layer barns housing infected birds and tested with real-time reverse transcriptase PCR. The distribution and load of viral RNA in barns in which most birds were dead at the onset of depopulation efforts (high-mortality barns) were compared with those of barns in which birds were euthanatized before excess mortality occurred (normal-mortality barns). A statistically significant difference was seen between cycle threshold (Ct) values for samples taken of fans, feed troughs, barn floors, barn walls, cages, manure-associated locations, barn doors, egg belts, and the exterior of high-mortality vs. normal-mortality barns. In high-mortality barns, sample sites were found to be the most to least contaminated in the following order: cages, manure-associated locations, barn floors, egg belts, feed troughs, barn doors, barn walls, fans, exterior, and egg processing. Significant changes in Ct values over time following HPAI detection in a barn and depopulation of birds on an infected farm were observed for the manure-associated, barn floor, barn wall, and fan sampling sites. These results show that high mortality in a flock as a result of HPAI will increase contamination of the farm environment. The results also suggest optimal sampling locations for detection of virus; however, the persistence of RNA on highmortality farms may delay the determination that adequate sanitization has been performed for restocking to take place.


Estudios de muestreo ambiental de granjas de gallinas de postura infectadas con influenza aviar altamente patógena H5N2 en Minnesota y Iowa. Las secreciones respiratorias, las heces, las plumas y huevos de gallinas infectadas con influenza aviar brindan amplias fuentes de virus para contaminar las casetas y el ambiente de la granja durante un brote de la enfermedad. Se realizaron estudios de muestreo ambiental en el medio oeste de los Estados Unidos en granjas afectadas durante el brote de influenza aviar altamente patógena H5N2 del año 2015 para evaluar el grado de contaminación viral. Se obtuvieron un total de 930 muestras de varios sitios dentro y fuera de las casetas de gallinas de postura que albergaron aves infectadas y se analizaron mediante pruebas de transcripción reversa y PCR en tiempo real. La distribución y la carga de ARN viral en casetas en las que la mayoría de las aves estaban muertas al inicio de los esfuerzos de despoblación (casetas de alta mortalidad) se compararon con los de las casetas en los que las aves se sacrificaron antes de que se produjera un exceso de mortalidad (casetas de mortalidad normal). Se observó una diferencia estadísticamente significativa entre los valores de ciclos umbrales (Ct) para muestras tomadas de ventiladores, comederos, pisos de casetas, paredes de casetas, jaulas, sitios asociados con gallinaza, puertas de casetas, bandas transportadoras de huevos y el exterior de las casetas con alta mortalidad en comparación con las casetas con mortalidad normal. En las casetas de alta mortalidad, se encontró que los sitios donde se recolectaron muestras presentaron contaminación de mayor grado a menor grado en el siguiente orden: jaulas, lugares asociados con gallinaza, pisos de casetas, bandas de huevos, comederos, puertas de casetas, paredes de casetas, ventiladores, exteriores y locales para el tratamiento del huevo. Se observaron cambios significativos en los valores de Ct a lo largo del tiempo después de la detección de la influenza aviar de alta patogenicidad en una caseta y de la despoblación de aves en una granja infectada en los sitios de muestreo asociados con gallinaza, en el piso de la caseta, en las paredes y en los ventiladores. Estos resultados muestran que la alta mortalidad en una parvada como resultado de influenza aviar de alta patogenicidad aumentará la contaminación del entorno de la granja. Los resultados también sugieren ubicaciones de muestreo óptimas para la detección de virus; sin embargo, la persistencia del ARN en las granjas de alta mortalidad puede retrasar la determinación de que se haya realizado un saneamiento adecuado para que se lleve a cabo la repoblación.


Subject(s)
Chickens , Environmental Microbiology , Housing, Animal , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza in Birds/virology , Animals , Disease Outbreaks/veterinary , Farms , Female , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Iowa/epidemiology , Minnesota/epidemiology , Poultry Diseases/virology , RNA, Viral
11.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067961

ABSTRACT

A novel reassortant influenza A virus (H5N2) was first detected in British Columbia, Canada, in December 2014. The virus rapidly spread along the waterfowl migration flyways in the United States, causing multiple HPAI outbreaks in poultry. Here, we present the complete genome sequence of HPAIV-H5N2 from a commercial chicken flock in Iowa.

SELECTION OF CITATIONS
SEARCH DETAIL
...