Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 4(1): 19, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28685477

ABSTRACT

BACKGROUND: A prototype anthropomorphic head and neck phantom has been designed to simulate the adult head and neck anatomy including some internal organs and tissues of interest, such as thyroid gland and sentinel lymph nodes (SLNs). The design of the head and neck phantom includes an inner jig holding the simulated SLNs and thyroid gland. The thyroid gland structure was manufactured using three-dimensional (3D) printing taking into consideration the morphology and shape of a healthy adult thyroid gland. RESULT: The head and neck phantom was employed to simulate a situation where there are four SLNs distributed at two different vertical levels and at two depths within the neck. Contrast to noise ratio (CNR) calculations were performed for the detected SLNs at an 80 mm distance between both pinhole collimators (0.5 and 1.0 mm diameters) and the surface of the head and neck phantom with a 100 s acquisition time. The recorded CNR values for the simulated SLNs are higher when the hybrid gamma camera (HGC) was fitted with the 1.0 mm diameter pinhole collimator. For instance, the recorded CNR values for the superficially simulated SLN (15 mm depth) containing 0.1 MBq of 99mTc using 0.5 and 1.0 mm diameter pinhole collimators are 6.48 and 16.42, respectively (~87% difference). Gamma and hybrid optical images were acquired using the HGC for the simulated thyroid gland. The count profiles through the middle of the simulated thyroid gland images provided by both pinhole collimators were obtained. The HGC could clearly differentiate the individual peaks of both thyroid lobes in the gamma image produced by the 0.5-mm pinhole collimator. In contrast, the recorded count profile for the acquired image using the 1.0-mm-diameter pinhole collimator showed broader peaks for both lobes, reflecting the degradation of the spatial resolution with increasing the diameter of the pinhole collimator. CONCLUSIONS: This anthropomorphic head and neck phantom provides a valuable tool for assessing the imaging ability of gamma cameras used for imaging the head and neck region. The standardisation of test phantoms for SFOV gamma systems will provide an opportunity to collect data across various medical centres. The phantom described is cost effective, reproducible, flexible and anatomically representative.

2.
Nucl Med Commun ; 38(9): 729-736, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28704342

ABSTRACT

INTRODUCTION: Hybrid imaging has proven to be a major innovation in nuclear medicine, allowing the fusion of functional information with anatomical detail. In the past, the use of hybrid imaging such as PET-CT, PET-MRI and SPECT-CT has been of great clinical benefit; however, these scanners are relatively large and bulky. We have developed and investigated the clinical application of a compact small field of view hybrid gamma camera (HGC) that is suitable for small-organ imaging at the patient bedside. PATIENTS AND METHODS: The HGC - consisting of a CsI(Tl) scintillation crystal coupled to an electron-multiplying charge-coupled device and an optical camera - was used in this study. Eligible patients attending the nuclear medicine clinic at Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK, were invited to take part in this study. Following the standard injection of either a Tc-labelled or I-labelled radiopharmaceutical, images of the patient were acquired using the HGC and presented in a fused optical-gamma display. RESULTS: There were 24 patients enrolled in the study (age range between 30 and 83 years, mean: 58.6 years), images of 18 of whom were successfully acquired. These included patients who were undergoing bone, thyroid, lacrimal drainage, DaTscan and lymphatic imaging. In general, the small field of view system was well suited to small-organ imaging. The uptake could be clearly seen in relation to the patient surface anatomy and showed particular promise for lymphatic, thyroid and lacrimal drainage studies. CONCLUSION: This pilot study has demonstrated the first clinical results of hybrid optical-gamma imaging in patients. The use of this system has raised new possibilities for small-organ imaging, in which the localization of radiopharmaceutical uptake can be presented in an anatomical context using optical imaging. The compact nature of the hybrid system offers the potential for bedside investigations and intraoperative use.


Subject(s)
Gamma Cameras , Image Enhancement/instrumentation , Radionuclide Imaging/instrumentation , Adult , Aged , Aged, 80 and over , Equipment Design , Equipment Failure Analysis , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Miniaturization , Phantoms, Imaging , Pilot Projects , Radionuclide Imaging/methods , Reproducibility of Results , Sensitivity and Specificity
3.
Sensors (Basel) ; 17(3)2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28282957

ABSTRACT

The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality-gamma ray imaging. Recently, a hybrid system-gamma plus optical imaging-has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR) fluorescence images.


Subject(s)
Gamma Cameras , Gamma Rays , Optical Imaging , Radionuclide Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...