Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 21(3): 643-653, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35073107

ABSTRACT

Bioinformatics and machine learning tools have made it possible to integrate data across different -omics platforms for novel multiomic insights into diseases. To synergistically process -omics data in an integrative manner, analyte extractions for each -omics type need to be done on the same set of clinical samples. Therefore, we introduce a simultaneous dual extraction method for generating both metabolomic (polar metabolites only) and glycomic (protein-derived N-glycans only) profiles from one sample with good extraction efficiency and reproducibility. As proof of the usefulness of the extraction and joint-omics workflow, we applied it on platelet samples obtained from a cohort study comprising 66 coronary heart disease (CHD) patients and 34 matched healthy community-dwelling controls. The metabolomics and N-glycomics data sets were subjected to block partial least-squares-discriminant analysis (block-PLS-DA) based on sparse generalized canonical correlation analysis (CCA) for identifying relevant mechanistic interactions between metabolites and glycans. This joint-omics investigation revealed intermodulative roles that protein-bound carbohydrates or glycoproteins and amino acids have in metabolic pathways and through intermediate protein dysregulations. It also suggested a protective role of the glyco-redox network in CHD, demonstrating proof-of-principle for a joint-omics analysis in providing new insights into disease mechanisms, as enabled by a simultaneous polar metabolite and protein-derived N-glycan extraction workflow.


Subject(s)
Glycomics , Metabolomics , Cohort Studies , Glycomics/methods , Humans , Metabolomics/methods , Polysaccharides , Reproducibility of Results , Workflow
2.
Talanta ; 239: 123061, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34809984

ABSTRACT

Recombinant protein biopharmaceuticals comprise a significant portion of the current drug development landscape. The glycosylation profile of these proteins is a key quality parameter as it can affect their safety, efficacy, and stability. However, glycan analysis is challenging because of the complexity of their structures. To overcome this challenge in achieving accurate glycan identification, cross-identification of N-Glycans by CE-LIF method using two capillary coatings and three labeling dyes was developed in this work. This work explored whether complementary separation capabilities can be achieved using homemade polyvinyl alcohol (PVA) coating and commercial Guarant™ (Guarant) coating in the analysis of N-glycans. Similar separation profiles were observed using the two capillary coatings, and hence the N-glycan GU databases generated by these coatings were comparable and complementary. The performance of cross-validation by labeling with three fluorescent dyes indicated that low covariance of APTS and Turquoise™ labeling can be obtained, and hence these two labeling mechanisms provided better accuracy for the identification of glycans. Superior reproducibility with RSDs less than 1% for all target glycan standards was achieved by the internal standards (IS) method using maltodextrin ladders as additives in the separation buffer. The developed CE-LIF analysis method was applied to the identification of N-glycans in IgG samples.


Subject(s)
Electrophoresis, Capillary , Polysaccharides , Fluorescent Dyes , Glycosylation , Reproducibility of Results
3.
Glycobiology ; 32(6): 469-482, 2022 05 23.
Article in English | MEDLINE | ID: mdl-34939124

ABSTRACT

Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Diagnostic challenges remain in this highly time-sensitive condition. Using capillary electrophoresis-laser-induced fluorescence, we analyzed the blood plasma N-glycan profile in a cohort study comprising 103 patients with AMI and 69 controls. Subsequently, the data generated was subjected to classification modeling to identify potential AMI biomarkers. An area under the Receiving Operating Characteristic curve (AUCROC) of 0.81 was obtained when discriminating AMI vs. non-MI patients. We postulate that the glycan profile involves a switch from a pro- to an anti-inflammatory state in the AMI pathophysiology. This was supported by significantly decreased levels in galactosylation, alongside increased levels in sialylation, afucosylation and GlcNAc bisection levels in the blood plasma of AMI patients. By substantiating the glycomics analysis with immunoglobulin G (IgG) protein measurements, robustness of the glycan-based classifiers was demonstrated. Changes in AMI-related IgG activities were also confirmed to be associated with alterations at the glycosylation level. Additionally, a glycan-biomarker panel derived from glycan features and current clinical biomarkers performed remarkably (AUCROC = 0.90, sensitivity = 0.579 at 5% false positive rate) when discriminating between patients with ST-segment elevation MI (n = 84) and non-ST-segment elevation MI (n = 19). Moreover, by applying the model trained using glycomics information, AMI and controls can still be discriminated at 1 and 6 months after baseline. Thus, glycomics biomarkers could potentially serve as a valuable complementary test to current diagnostic biomarkers. Additional research on their utility and associated biomechanisms via a large-scale study is recommended.


Subject(s)
Myocardial Infarction , Biomarkers , Cohort Studies , Glycomics , Humans , Immunoglobulin G/metabolism , Myocardial Infarction/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...