Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(46): 53371-53381, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37935594

ABSTRACT

Establishing an effective metal-free photocatalyst for sustainable applications remains a huge challenge. Herein, we developed ultrathin oxygen-doped g-C3N4 nanosheets with carbon defects (OCvN) photocatalyst via a facile gas bubble template-assisted thermal copolymerization method. A series of OCvN with different dopant amounts ranging from 0 to 10% were synthesized and used as photocatalysts under illumination of low-power (2 × 18 W, 0.18 mW/cm2) and commercially available energy-saving light bulbs. Upon testing for photocatalytic Escherichia coli inactivation, the best-performing sample, OCvN-3, demonstrated an astonishing disinfection activity of over 7-log reduction after 3 h of illumination, boasting an 18-fold improvement in its antibacterial activity compared to that of pristine g-C3N4. The enhanced performance was attributed to the synergistic effects of increased surface area, extended visible light harvesting, improved electronic conductivity, and ultralow resistance to charge transfer. This study successfully introduced a green photocatalyst that demonstrates the most effective disinfection performance ever recorded among metal-free g-C3N4 materials. Its disinfection capabilities are comparable to those of metal-based photocatalysts when they are exposed to low-power light.

2.
Nat Commun ; 14(1): 7676, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996415

ABSTRACT

Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnIn2S4 (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.

3.
ACS Omega ; 8(2): 1851-1863, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687105

ABSTRACT

Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.

4.
Phys Chem Chem Phys ; 24(42): 25735-25739, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36278396

ABSTRACT

Effective photocatalytic polyethylene degradation by TiO2 is hindered by the sluggish kinetics of alkyl hydroperoxide decomposition. Introduction of oxygen vacancies onto TiO2 destabilizes the hydroperoxide O-O bond due to mid-gap states and the elevated Fermi level. Downshift of the d-band center by oxygen vacancies also enhanced adsorbate-surface interactions and lowered the activation energy barrier from Gibbs calculations. Experimental evidence additionally substantiated enhanced polyethylene degradation on TiO2-x compared to TiO2.

5.
Materials (Basel) ; 15(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35888364

ABSTRACT

Photocatalytic water splitting has garnered tremendous attention for its capability to produce clean and renewable H2 fuel from inexhaustible solar energy. Until now, most research has focused on scarce pure water as the source of H2, which is not consistent with the concept of sustainable energy. Hence, the importance of photocatalytic splitting of abundant seawater in alleviating the issue of pure water shortages. However, seawater contains a wide variety of ionic components which have unknown effects on photocatalytic H2 production. This work investigates photocatalytic seawater splitting conditions using environmentally friendly amorphous carbon nitride (ACN) as the photocatalyst. The individual effects of catalyst loading (X1), sacrificial reagent concentration (X2), salinity (X3), and their interactive effects were studied via the Box-Behnken design in response surface modeling towards the H2 evolution reaction (HER) from photocatalytic artificial seawater splitting. A second-order polynomial regression model is predicted from experimental data where the variance analysis of the regressions shows that the linear term (X1, X2), the two-way interaction term X1X2, and all the quadratic terms (X12, X22, X23) pose significant effects towards the response of the HER rate. Numerical optimization suggests that the highest HER rate is 7.16 µmol/h, achievable by dosing 2.55 g/L of ACN in 45.06 g sea salt/L aqueous solution containing 17.46 vol% of triethanolamine. Based on the outcome of our findings, an apparent effect of salt ions on the adsorption behavior of the photocatalyst in seawater splitting with a sacrificial reagent has been postulated.

6.
ChemSusChem ; 15(14): e202200471, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35447013

ABSTRACT

Photocatalytic reduction of CO2 has attracted enormous interest as a sustainable and renewable source of energy. In the past decade, numerous bulk-type semiconductors have been developed, but the existing designs suffer many limitations, namely rapid recombination of charge carriers and weak light absorption ability. Herein, a bottom-up approach was developed to design atomically thin sulfur-doped Bi2 WO6 perovskite nanosheets (S-BWO) with improved reduction ability, extended visible light absorption, prolonged lifetime of charge carriers, enhanced adsorption of CO2 , and reduced work function. Compared with pristine Bi2 WO6 (P-BWO), S-BWO nanosheets exhibited a 3-fold improvement in photocatalytic reduction of CO2 under simulated sunlight irradiation. Experimental studies and density functional theory calculations revealed the synergistic roles of atomically thin nanosheets and S atoms in promoting photocatalytic efficiency.

7.
Sci Rep ; 12(1): 1927, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35121781

ABSTRACT

ZnIn2S4 (ZIS) is an efficient photocatalyst for solar hydrogen (H2) generation from water splitting owing to its suitable band gap, excellent photocatalytic behaviour and high stability. Nevertheless, modifications are still necessary to further enhance the photocatalytic performance of ZIS for practical applications. This has led to our interest in exploring phosphorus doping on ZIS for photocatalytic water splitting, which has not been studied till date. Herein, phosphorus-doped ZnIn2S4 (P-ZIS) was modelled via Density Functional Theory to investigate the effects of doping phosphorus on the structural and electronics properties of ZIS as well as its performance toward photocatalytic water splitting. This work revealed that the replacement of S3 atom by substitutional phosphorus gave rise to the most stable P-ZIS structure. In addition, P-ZIS was observed to experience a reduction in band gap energy, an upshift of valence band maximum (VBM), an increase in electron density near VBM and a reduction of H* adsorption-desorption barrier, all of which are essential for the enhancement of the hydrogen evolution reaction. In overall, detailed theoretical analysis carried out in this work could provide critical insights towards the development of P-ZIS-based photocatalysts for efficient H2 generation via solar water splitting.

8.
Chemistry ; 27(9): 3085-3090, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33263935

ABSTRACT

Universal access to clean water has been a global ambition over the years. Photocatalytic water disinfection through advanced oxidation processes has been regarded as one of the promising methods for breaking down microbials. The forefront of this research focuses on the application of metal-free photocatalysts for disinfection to prevent secondary pollution. Graphitic carbon nitride (g-C3 N4 ) has achieved instant attention as a metal-free and visible-light-responsive photocatalyst for various energy and environmental applications. However, the photocatalytic efficiency of g-C3 N4 is still affected by its rapid charge recombination and sluggish electron-transfer kinetics. In this contribution, two-dimensionally protonated g-C3 N4 was employed as metal-free photocatalyst for water treatment and demonstrated 100 % of Escherichia coli within 4 h under irradiation with a 23 W light bulb. The introduction of protonation can modulate the surface charge of g-C3 N4 ; this enhances its conductivity and provides a "highway" for the delocalization of electrons. This work highlights the potential of conjugated polymers in antibacterial application.


Subject(s)
Disinfection/methods , Escherichia coli/chemistry , Escherichia coli/radiation effects , Graphite/chemistry , Graphite/radiation effects , Light , Microbial Viability/radiation effects , Nitrogen Compounds/chemistry , Nitrogen Compounds/radiation effects , Protons , Catalysis/radiation effects , Electrons , Graphite/pharmacology , Microbial Viability/drug effects , Nitrogen Compounds/pharmacology , Photochemistry
9.
ACS Appl Mater Interfaces ; 12(24): 26991-27000, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32433865

ABSTRACT

The photocatalytic conversion of CO2 to energy-rich CH4 solar fuel is an ideal strategy for future energy generation as it can resolve global warming and the imminent energy crisis concurrently. However, the efficiency of this technology is unavoidably hampered by the ineffective generation and utilization of photoinduced charge carriers. In this contribution, we report a facile in situ topotactic transformation approach where {001}-faceted BiOBr nanosheets (BOB-NS) were employed as the starting material for the formation of single-crystalline ultrathin Bi2WO6 nanosheets (BWO-NS). The as-obtained BWO-NS not only preserved the advantageous properties of the 2D nanostructure and predominantly exposed {001} facets but also possessed enlarged specific surface areas as a result of sample thickness reduction. As opposed to the commonly observed bandgap broadening when the particle sizes decrease to an ultrathin nanoscale owing to the quantum size effect, the developed BWO-NS exhibited a fascinating bandgap narrowing compared to those of pristine Bi2WO6 nanoplates (BWO-P) synthesized from a conventional one-step hydrothermal approach. Moreover, the electronic band positions of BWO-NS were modulated as a result of ion exchange for the reconstruction of the energy bands, where BWO-NS demonstrated significant upshifting of CB and VB levels; these are beneficial for photocatalytic reduction applications. This propitious design of BWO-NS through integrating the merits of BOB-NS caused BWO-NS to exhibit substantial 2.6 and 9.3-fold enhancements of CH4 production over BOB-NS and BWO-P, respectively.

10.
Adv Sci (Weinh) ; 7(7): 1903171, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274312

ABSTRACT

As the world decides on the next giant step for the renewable energy revolution, scientists have begun to reinforce their headlong dives into the exploitation of solar energy. Hitherto, numerous attempts are made to imitate the natural photosynthesis of plants by converting solar energy into chemical fuels which resembles the "Z-scheme" process. A recreation of this system is witnessed in artificial Z-scheme photocatalytic water splitting to generate hydrogen (H2). This work outlines the recent significant implication of the Z-scheme system in photocatalytic water splitting, particularly in the role of electron mediator and the key factors that improve the photocatalytic performance. The Review begins with the fundamental rationales in Z-scheme water splitting, followed by a survey on the development roadmap of three different generations of Z-scheme system: 1) PS-A/D-PS (first generation), 2) PS-C-PS (second generation), and 3) PS-PS (third generation). Focus is also placed on the scaling up of the "leaf-to-tree" challenge of Z-scheme water splitting system, which is also known as Z-scheme photocatalyst sheet. A detailed investigation of the Z-scheme system for achieving H2 evolution from past to present accompanied with in-depth discussion on the key challenges in the area of Z-scheme photocatalytic water splitting are provided.

11.
ACS Appl Mater Interfaces ; 9(5): 4558-4569, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28068056

ABSTRACT

Owing to its superior properties and versatility, graphene has been proliferating the energy research scene in the past decade. In this contribution, nitrogen (N-) and boron (B-) doped reduced graphene oxide (rGO) variants were investigated as a sole photocatalyst for the green production of H2 and their properties with respect to photocatalysis were elucidated for the first time. N- and B-rGOs were facilely prepared via the pyrolysis of graphene oxide with urea and boron anhydride as their respective dopant source. The pyrolysis temperature was varied (600-800 °C for N-rGO and 800-1000 °C for B-rGO) in order to modify dopant loading percentage (%) which was found to be influential to photocatalytic activity. N-rGO600 (8.26 N at%) and B-rGO1000 (3.59 B at%), which holds the highest at% from each of their party, exhibited the highest H2 activity. Additionally, the effects of the nature of N and B bonding configuration in H2 photoactivity were also examined. This study demonstrates the importance of dopant atoms in graphene, rendering doping as an effective strategy to bolster photocatalytic activity for standalone graphene derivative photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...