Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 162: 114578, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996678

ABSTRACT

BACKGROUND: The peptide hormone relaxin has potent anti-fibrotic and anti-inflammatory properties in various organs, including the kidneys. However, the protective effects of relaxin in the context of diabetic kidney complications remain controversial. Here, we aimed to evaluate the effects of relaxin treatment on key markers of kidney fibrosis, oxidative stress, and inflammation and their subsequent impact on bile acid metabolism in the streptozotocin-induced diabetes mouse model. METHODS AND RESULTS: Male mice were randomly allocated to placebo-treated control, placebo-treated diabetes or relaxin-treated diabetes groups (0.5 mg/kg/d, final 2 weeks of diabetes). After 12 weeks of diabetes or sham, the kidney cortex was harvested for metabolomic and gene expression analyses. Diabetic mice exhibited significant hyperglycaemia and increased circulating levels of creatine, hypoxanthine and trimethylamine N-oxide in the plasma. This was accompanied by increased expression of key markers of oxidative stress (Txnip), inflammation (Ccl2 and Il6) and fibrosis (Col1a1, Mmp2 and Fn1) in the diabetic kidney cortex. Relaxin treatment for the final 2 weeks of diabetes significantly reduced these key markers of renal fibrosis, inflammation, and oxidative stress in diabetic mice. Furthermore, relaxin treatment significantly increased the levels of bile acid metabolites, deoxycholic acid and sodium glycodeoxycholic acid, which may in part contribute to the renoprotective action of relaxin in diabetes. CONCLUSION: In summary, this study shows the therapeutic potential of relaxin and that it may be used as an adjunctive treatment for diabetic kidney complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Relaxin , Animals , Mice , Male , Diabetic Nephropathies/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Relaxin/pharmacology , Streptozocin/pharmacology , Kidney , Oxidative Stress , Inflammation/drug therapy , Fibrosis
2.
Am J Physiol Heart Circ Physiol ; 324(4): H553-H570, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36827229

ABSTRACT

Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.


Subject(s)
Atherosclerosis , Extracellular Vesicles , Renal Insufficiency, Chronic , Vascular Calcification , Humans , Mice , Animals , Caveolin 1/metabolism , Calcium/metabolism , Muscle, Smooth, Vascular/metabolism , Vascular Calcification/genetics , Vascular Calcification/prevention & control , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism , Membrane Proteins/metabolism , Atherosclerosis/metabolism , Myocytes, Smooth Muscle/metabolism
3.
Front Cardiovasc Med ; 9: 809301, 2022.
Article in English | MEDLINE | ID: mdl-35694672

ABSTRACT

Background: Calcific aortic valve disease (CAVD) is often undiagnosed in asymptomatic patients, especially in underserved populations. Although artificial intelligence has improved murmur detection in auscultation exams, murmur manifestation depends on hemodynamic factors that can be independent of aortic valve (AoV) calcium load and function. The aim of this study was to determine if the presence of AoV calcification directly influences the S2 heart sound. Methods: Adult C57BL/6J mice were assigned to the following 12-week-long diets: (1) Control group (n = 11) fed a normal chow, (2) Adenine group (n = 4) fed an adenine-supplemented diet to induce chronic kidney disease (CKD), and (3) Adenine + HP (n = 9) group fed the CKD diet for 6 weeks, then supplemented with high phosphate (HP) for another 6 weeks to induce AoV calcification. Phonocardiograms, echocardiogram-based valvular function, and AoV calcification were assessed at endpoint. Results: Mice on the Adenine + HP diet had detectable AoV calcification (9.28 ± 0.74% by volume). After segmentation and dimensionality reduction, S2 sounds were labeled based on the presence of disease: Healthy, CKD, or CKD + CAVD. The dataset (2,516 S2 sounds) was split subject-wise, and an ensemble learning-based algorithm was developed to classify S2 sound features. For external validation, the areas under the receiver operating characteristic curve of the algorithm to classify mice were 0.9940 for Healthy, 0.9717 for CKD, and 0.9593 for CKD + CAVD. The algorithm had a low misclassification performance of testing set S2 sounds (1.27% false positive, 1.99% false negative). Conclusion: Our ensemble learning-based algorithm demonstrated the feasibility of using the S2 sound to detect the presence of AoV calcification. The S2 sound can be used as a marker to identify AoV calcification independent of hemodynamic changes observed in echocardiography.

4.
J Cardiovasc Dev Dis ; 9(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35735797

ABSTRACT

Atherosclerotic plaque calcification directly contributes to the leading cause of morbidity and mortality by affecting plaque vulnerability and rupture risk. Small microcalcifications can increase plaque stress and promote rupture, whereas large calcifications can stabilize plaques. Drugs that target bone mineralization may lead to unintended consequences on ectopic plaque calcification and cardiovascular outcomes. Bisphosphonates, common anti-osteoporotic agents, have elicited unexpected cardiovascular events in clinical trials. Here, we investigated the role of bisphosphonate treatment and timing on the disruption or promotion of vascular calcification and bone minerals in a mouse model of atherosclerosis. We started the bisphosphonate treatment either before plaque formation, at early plaque formation times associated with the onset of calcification, or at late stages of plaque development. Our data indicated that long-term bisphosphonate treatment (beginning prior to plaque development) leads to higher levels of plaque calcification, with a narrower mineral size distribution. When given later in plaque development, we measured a wider distribution of mineral size. These morphological alterations might be associated with a higher risk of plaque rupture by creating stress foci. Yet, bone mineral density positively correlated with the duration of the bisphosphonate treatment.

6.
Front Physiol ; 12: 650769, 2021.
Article in English | MEDLINE | ID: mdl-34305630

ABSTRACT

Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO). UUO was performed on the left kidney of humanized RXFP1 mice, where the right kidneys served as contralateral controls. Mice were randomly allocated to receive either vehicle or ML290 (30 mg/kg) via daily intraperitoneal injection, and kidneys were collected for apoptosis, RNA, and protein analyses. UUO significantly increased expression of pro-apoptotic markers in both vehicle- and ML290-treated mice when compared to their contralateral control kidneys. Specifically, Bax expression and Erk1/2 activity were upregulated, accompanied by an increase of TUNEL-positive cells in the UUO kidneys. Additionally, UUO induced marked increase in myofibroblast differentiation and aberrant remodeling on the extracellular matrix. ML290 suppressed these processes by promoting a reduction of pro-apoptotic, fibroblastic, and inflammatory markers in the UUO kidneys. Finally, the potent effects of ML290 to remodel the extracellular matrix were demonstrated by its ability to reduce collagen gene expression in the UUO kidneys. Our data indicate that daily administration of ML290 has renal protective effects in the UUO mouse model, specifically through its anti-apoptotic and extracellular matrix remodeling properties.

7.
Br J Pharmacol ; 177(1): 217-233, 2020 01.
Article in English | MEDLINE | ID: mdl-31479151

ABSTRACT

BACKGROUND AND PURPOSE: Endothelium-derived vasoconstriction is a hallmark of vascular dysfunction in hypertension. In some cases, an overproduction of endothelium-derived prostacyclin (PGI2 ) can cause contraction rather than relaxation. Relaxin is well known for its vasoprotective actions, but the possibility that this peptide could also reverse endothelium-derived vasoconstriction has never been investigated. We tested the hypothesis that short-term relaxin treatment mitigates endothelium-derived vasoconstriction in spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH: Male Wistar Kyoto rats (WKY) and SHR were subcutaneously infused with either vehicle (20 mmol·L-1 sodium acetate) or relaxin (13.3 µg·kg-1 ·hr-1 ) using osmotic minipumps for 3 days. Vascular reactivity to the endothelium-dependent agonist ACh was assessed in vitro by wire myography. Quantitative PCR and LC-MS were used to identify changes in gene expression of prostanoid pathways and PG production, respectively. KEY RESULTS: Relaxin treatment ameliorated hypertension-induced endothelial dysfunction by increasing NO-dependent relaxation and reducing endothelium-dependent contraction. Notably, short-term relaxin treatment up-regulated mesenteric PGI2 receptor (IP) expression, permitting PGI2 -IP-mediated vasorelaxation. In the aorta, reversal of contraction was accompanied by suppression of the hypertension-induced increase in prostanoid-producing enzymes and reduction in PGI2 -evoked contractions. CONCLUSIONS AND IMPLICATIONS: Relaxin has region-dependent vasoprotective actions in hypertension. Specifically, relaxin has distinct effects on endothelium-derived contracting factors and their associated vasoconstrictor pathways in mesenteric arteries and the aorta. Taken together, these observations reveal the potential of relaxin as a new therapeutic agent for vascular disorders that are associated with endothelium-derived vasoconstriction including hypertension.


Subject(s)
Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Relaxin/therapeutic use , Vasoconstriction/drug effects , Animals , Dose-Response Relationship, Drug , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Relaxin/pharmacology , Vasoconstriction/physiology
8.
Br J Pharmacol ; 177(7): 1677-1691, 2020 04.
Article in English | MEDLINE | ID: mdl-31724161

ABSTRACT

BACKGROUND AND PURPOSE: Arterial stiffness, a characteristic feature of diabetes, increases the risk of cardiovascular complications. Potential mechanisms that promote arterial stiffness in diabetes include oxidative stress, glycation and inflammation. The anti-inflammatory protein annexin-A1 has cardioprotective properties, particularly in the context of ischaemia. However, the role of endogenous annexin-A1 in the vasculature in both normal physiology and pathophysiology remains largely unknown. Hence, this study investigated the role of endogenous annexin-A1 in diabetes-induced remodelling of mouse mesenteric vasculature. EXPERIMENTAL APPROACH: Insulin-resistance was induced in male mice (AnxA1+/+ and AnxA1-/- ) with the combination of streptozotocin (55mg/kg i.p. x 3 days) with high fat diet (42% energy from fat) or citrate vehicle with normal chow diet (20-weeks). Insulin-deficiency was induced in a separate cohort of mice using a higher total streptozocin dose (55mg/kg i.p. x 5 days) on chow diet (16-weeks). At study endpoint, mesenteric artery passive mechanics were assessed by pressure myography. KEY RESULTS: Insulin-resistance induced significant outward remodelling but had no impact on passive stiffness. Interestingly, vascular stiffness was significantly increased in AnxA1-/- mice when subjected to insulin-resistance. In contrast, insulin-deficiency induced outward remodelling and increased volume compliance in mesenteric arteries, regardless of genotype. In addition, the annexin-A1 / formyl peptide receptor axis is upregulated in both insulin-resistant and insulin-deficient mice. CONCLUSION AND IMPLICATIONS: Our study provided the first evidence that endogenous AnxA1 may play an important vasoprotective role in the context of insulin-resistance. AnxA1-based therapies may provide additional benefits over traditional anti-inflammatory strategies for reducing vascular injury in diabetes.


Subject(s)
Annexin A1 , Insulin Resistance , Animals , Inflammation , Insulin , Male , Mice , Receptors, Formyl Peptide/metabolism
9.
FASEB J ; 33(11): 12435-12446, 2019 11.
Article in English | MEDLINE | ID: mdl-31419161

ABSTRACT

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Cell Proliferation/drug effects , Liver Cirrhosis/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Peptide/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Carbon Tetrachloride Poisoning/genetics , Cell Line, Transformed , Cell Proliferation/genetics , Cytokines/genetics , Cytokines/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , Mice, Transgenic , Organoids/metabolism , Organoids/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Signal Transduction/genetics
10.
Curr Opin Pharmacol ; 45: 42-48, 2019 04.
Article in English | MEDLINE | ID: mdl-31048209

ABSTRACT

Cardiovascular disease is the most common cause of mortality worldwide, accounting for almost 50% of all deaths globally. Vascular endothelial dysfunction and fibrosis are critical in the pathophysiology of cardiovascular disease. Relaxin, an insulin-like peptide, is known to have beneficial actions in the cardiovascular system through its vasoprotective and anti-fibrotic effects. However, relaxin has several limitations of peptide-based drugs such as poor oral bioavailability, laborious, and expensive to synthesize. This review will focus on recent developments in relaxin mimetics, their pharmacology, associated signalling mechanisms, and their therapeutic potential for the management and treatment of cardiovascular disease.


Subject(s)
Cardiovascular Diseases/drug therapy , Peptide Fragments/therapeutic use , Relaxin/therapeutic use , Animals , Biomimetics , Humans
11.
Mol Cell Endocrinol ; 487: 59-65, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30660699

ABSTRACT

Fibrosis is associated with accumulation of excess fibrillar collagen, leading to tissue dysfunction. Numerous processes, including inflammation, myofibroblast activation, and endothelial-to-mesenchymal transition, play a role in the establishment and progression of fibrosis. Relaxin is a peptide hormone with well-known antifibrotic properties that result from its action on numerous cellular targets to reduce fibrosis. Relaxin activates multiple signal transduction pathways as a mechanism to suppress inflammation and myofibroblast activation in fibrosis. In this review, the general mechanisms underlying fibrotic diseases are described, along with the current state of knowledge regarding cellular targets of relaxin. Finally, an overview is presented summarizing the signaling pathways activated by relaxin and other relaxin family peptide receptor agonists to suppress fibrosis.


Subject(s)
Extracellular Matrix/metabolism , Relaxin/metabolism , Signal Transduction , Animals , Fibrosis , Humans , Myofibroblasts/metabolism , Myofibroblasts/pathology , Nitric Oxide/metabolism
12.
Mol Cell Endocrinol ; 487: 40-44, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30590098

ABSTRACT

The peptide hormone relaxin has beneficial roles in several organs through its action on its cognate G protein-coupled receptor, RXFP1. Relaxin administration is limited to intravenous, subcutaneous, intramuscular, or spinal injection. Another drawback of peptide-based therapy is the short half-life, which requires continuous delivery of the drug to achieve efficient concentration in target organs. The discovery of a non-peptide small molecule agonist of RXFP1, ML290, provides an alternative to the natural ligand. This review summarizes the development of ML290 and its potential future therapeutic applications in various diseases, including liver fibrosis and cardiovascular diseases. We also discuss the development of small molecule agonists targeting the insulin-like 3 receptor, RXFP2, and propose the potential use of these small molecules in the context of bone and muscle remodeling.


Subject(s)
Insulins/metabolism , Receptors, Peptide/metabolism , Relaxin/metabolism , Small Molecule Libraries/pharmacology , Animals , Humans , Molecular Targeted Therapy , Signal Transduction
13.
Front Pharmacol ; 9: 501, 2018.
Article in English | MEDLINE | ID: mdl-29867503

ABSTRACT

Cardiovascular complications are the major cause of mortality in patients with diabetes. This is closely associated with both macrovascular and microvascular complications of diabetes, which lead to organ injuries in diabetic patients. Previous studies have consistently demonstrated the beneficial effects of relaxin treatment for protection of the vasculature, with evidence of antioxidant and anti-remodeling actions. Relaxin enhances nitric oxide, prostacyclin and endothelium-derived hyperpolarization (EDH)-type-mediated relaxation in various vascular beds. These effects of relaxin on the systemic vasculature, coupled with its cardiac actions, reduce pulmonary capillary wedge pressure and pulmonary artery pressure. This results in an overall decrease in systemic and pulmonary vascular resistance in heart failure patients. The anti-fibrotic actions of relaxin are well established, a desirable property in the context of diabetes. Further, relaxin ameliorates diabetic wound healing, with accelerated angiogenesis and vasculogenesis. Relaxin-mediated stimulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1-α, as well as regulation of metalloproteinase expression, ameliorates cardiovascular fibrosis in diabetic mice. In the heart, relaxin is a cardioprotective molecule in several experimental animal models, exerting anti-fibrotic, anti-hypertrophy and anti-apoptotic effects in diabetic pathologies. Collectively, these studies provide a foundation to propose the therapeutic potential for relaxin as an adjunctive agent in the prevention or treatment of diabetes-induced cardiovascular complications. This review provides a comprehensive overview of the beneficial effects of relaxin, and identifies its therapeutic possibilities for alleviating diabetes-related cardiovascular injury.

14.
Eur J Pharmacol ; 807: 190-197, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28478069

ABSTRACT

Recombinant H2 relaxin (serelaxin) has gained considerable attention as a new vasoprotective drug, largely due to its potential therapeutic effects in heart failure and fibrosis. However, serelaxin is laborious and costly to produce. A single-chain peptidomimetic, B7-33, has been developed to overcome these problems but little is known about its biological actions in the vascular system. This study first compared the rapid vascular effects of an acute bolus injection of B7-33 compared with serelaxin. Male Wistar rats received a tail vein injection of placebo (20mM sodium acetate), B7-33 (13.3µg/kg) or serelaxin (26.6µg/kg). Three hours later vascular function in the mesenteric artery, small renal artery and abdominal aorta was assessed by wire myography. B7-33 and serelaxin selectively enhanced bradykinin-mediated endothelium-dependent relaxation in the rat mesenteric artery by increasing endothelium-derived hyperpolarization, but had no overall effects on relaxation in the small renal artery or aorta. We then compared the actions of B7-33 and serelaxin in an ex vivo model of vascular disease using virgin female mouse mesenteric arteries pre-incubated in placental trophoblast conditioned media to induce endothelial dysfunction characteristic of preeclampsia. Co-incubation of these arteries in trophoblast conditioned media with B7-33 or serelaxin (15, 30nM) prevented the development of endothelial dysfunction. In conclusion, equimolar doses of B7-33 replicated the acute beneficial vascular effects of serelaxin in rat mesenteric arteries and also prevented endothelial dysfunction induced by placental trophoblast conditioned media in mouse mesenteric arteries. Therefore, B7-33 should be considered as a cost-effective vasoactive therapeutic in cardiovascular diseases, including preeclampsia.


Subject(s)
Arteries/drug effects , Biomimetic Materials/pharmacology , Peptide Fragments/pharmacology , Relaxin/metabolism , Relaxin/pharmacology , Animals , Arteries/metabolism , Arteries/physiology , Humans , Male , Rats , Rats, Wistar , Recombinant Proteins/metabolism
15.
Front Pharmacol ; 8: 141, 2017.
Article in English | MEDLINE | ID: mdl-28377719

ABSTRACT

Background: Glyceryl trinitrate (GTN) is a commonly prescribed treatment for acute heart failure patients. However, prolonged GTN treatment induces tolerance, largely due to increased oxidative stress and reduced aldehyde dehydrogenase-2 (ALDH-2) expression. Serelaxin has several vasoprotective properties, which include reducing oxidative stress and augmenting endothelial function. We therefore tested the hypothesis in rodents that serelaxin treatment could attenuate low-dose GTN-induced tolerance. Methods and Results: Co-incubation of mouse aortic rings ex vivo with GTN (10 µM) and serelaxin (10 nM) for 1 h, restored GTN responses, suggesting that serelaxin prevented the development of GTN tolerance. Male Wistar rats were subcutaneously infused with ethanol (control), low-dose GTN+placebo or low-dose GTN+serelaxin via osmotic minipumps for 3 days. Aortic vascular function and superoxide levels were assessed using wire myography and lucigenin-enhanced chemiluminescence assay respectively. Changes in aortic ALDH-2 expression were measured by qPCR and Western blot respectively. GTN+placebo infusion significantly increased superoxide levels, decreased ALDH-2 and attenuated GTN-mediated vascular relaxation. Serelaxin co-treatment with GTN significantly enhanced GTN-mediated vascular relaxation, reduced superoxide levels and increased ALDH-2 expression compared to GTN+placebo-treated rats. Conclusion: Our data demonstrate that a combination of serelaxin treatment with low dose GTN attenuates the development of GTN-induced tolerance by reducing superoxide production and increasing ALDH-2 expression in the rat aorta. We suggest that serelaxin may improve nitrate efficacy in a clinical setting.

16.
Sci Rep ; 7: 39604, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067255

ABSTRACT

Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Hypertrophy, Left Ventricular/drug therapy , Relaxin/administration & dosage , Animals , Aorta, Abdominal/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Hypertrophy, Left Ventricular/complications , Male , Mesenteric Arteries/drug effects , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Recombinant Proteins/administration & dosage , Streptozocin
17.
Biochem Pharmacol ; 128: 34-45, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28027880

ABSTRACT

Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound healing in diabetic mice. One possible mechanism of SeTal action is a direct effect on blood vessels. Therefore, we tested the hypothesis that SeTal prevents endothelial dysfunction by scavenging reactive oxidants in isolated mouse aorta under conditions of acute oxidative stress induced by hyperglycaemia. Aortae were isolated from C57BL/6 male mice and mounted on a wire-myograph to assess vascular function. In the presence of a superoxide radical generator, pyrogallol, 300µM and 1mM of SeTal effectively prevented endothelial dysfunction compared to other selenium-containing compounds. In a second set of ex vivo experiments, mouse aortae were incubated for three days with either normal or high glucose, and co-incubated with SeTal at 37°C in 5% CO2. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh), increased superoxide production and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor prostanoids.


Subject(s)
Endothelium, Vascular/drug effects , Free Radical Scavengers/pharmacology , Hexoses/pharmacology , Organoselenium Compounds/pharmacology , Animals , Aorta, Abdominal/drug effects , Aorta, Abdominal/physiology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Endothelium, Vascular/physiology , Glucose/pharmacology , In Vitro Techniques , Male , Mice, Inbred C57BL , Muscle Relaxation/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Nitric Oxide/metabolism , Oxidative Stress , Prostaglandins/metabolism , Superoxides/metabolism
18.
Pharmacol Res ; 111: 325-335, 2016 09.
Article in English | MEDLINE | ID: mdl-27363948

ABSTRACT

Increased vascular stiffness and reduced endothelial nitric oxide (NO) bioavailability are characteristic of diabetes. Whether these are evident at a more moderate levels of hyperglycaemia has not been investigated. The objectives of this study were to examine the association between the level of glycaemia and resistance vasculature phenotype, incorporating both arterial stiffness and endothelial function. Diabetes was induced in male Sprague Dawley rats with streptozotocin (STZ; 55mg/kg i.v.) and followed for 8 weeks. One week post STZ, diabetic rats were allocated to either moderate (∼20mM blood glucose, 6-7U/insulins.c. daily) or severe hyperglycaemia (∼30mM blood glucose, 1-2U/insulins.c. daily as required). At study end, rats were anesthetized, and the mesenteric arcade was collected. Passive mechanical wall properties were assessed by pressure myography. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) were assessed using wire myography. Our results demonstrated for the first time that mesenteric arteries from both moderate and severely hyperglycaemic diabetic rats exhibited outward hypertrophic remodelling and increased axial stiffness compared to arteries from non-diabetic rats. Secondly, mesenteric arteries from severely (∼30mM blood glucose), but not moderately hyperglycaemic (∼20mM blood glucose) rats exhibit a significant reduction to ACh sensitivity compared to their non-diabetic counterparts. This endothelial dysfunction was associated with significant reduction in endothelium-derived hyperpolarisation and endothelium-dependent NO-mediated relaxation. Interestingly, endothelium-derived nitroxyl (HNO)-mediated relaxation was intact. Therefore, moderate hyperglycaemia is sufficient to induce adverse structural changes in the mesenteric vasculature, but more severe hyperglycaemia is essential to cause endothelial dysfunction.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Diabetic Angiopathies/etiology , Endothelium, Vascular/physiopathology , Mesenteric Arteries/physiopathology , Vascular Remodeling , Vascular Stiffness , Animals , Biomarkers/blood , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetic Angiopathies/blood , Diabetic Angiopathies/physiopathology , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Nitric Oxide/metabolism , Nitrogen Oxides/metabolism , Rats, Sprague-Dawley , Severity of Illness Index , Vascular Resistance , Vasodilation , Vasodilator Agents/pharmacology
19.
Trends Pharmacol Sci ; 37(6): 498-507, 2016 06.
Article in English | MEDLINE | ID: mdl-27130518

ABSTRACT

Vascular dysfunction is an important hallmark of cardiovascular disease. It is characterized by increased sensitivity to vasoconstrictors, decreases in the endothelium-derived vasodilators nitric oxide (NO) and prostacyclin (PGI2), and endothelium-derived hyperpolarization (EDH). Serelaxin (recombinant human relaxin) has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in acute heart failure. In this review we first describe the contribution of endogenous relaxin to vascular homeostasis. We then provide a comprehensive overview of the novel mechanisms of serelaxin action in blood vessels that differentiate it from other vasodilator drugs and explain how this peptide could be used more widely as a therapeutic to alleviate vascular dysfunction in several cardiovascular diseases.


Subject(s)
Relaxin/pharmacology , Vascular Diseases/drug therapy , Vasodilator Agents/pharmacology , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Epoprostenol/metabolism , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Nitric Oxide/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Relaxin/administration & dosage , Vascular Diseases/physiopathology , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/administration & dosage
20.
Pharmacol Res ; 107: 220-228, 2016 05.
Article in English | MEDLINE | ID: mdl-26993102

ABSTRACT

Diabetes-induced endothelial dysfunction is a critical initiating factor in the development of cardiovascular complications. Treatment with relaxin improves tumour necrosis factor α-induced endothelial dysfunction by enhancing endothelial nitric oxide synthase (eNOS) activity and restoring superoxide dismutase 1 protein in rat aortic rings ex vivo. It is, therefore, possible that relaxin treatment could alleviate endothelial dysfunction in diabetes. This study aimed to test the hypothesis that serelaxin (recombinant human relaxin-2) prevents high glucose-induced vascular dysfunction in the mouse aorta. Abdominal aortae were isolated from C57BL/6 male mice and incubated in M199 media for 3days with either normal glucose (5.5mM) or high glucose (30mM), and co-incubated with placebo (20mM sodium acetate) or 10nM serelaxin at 37°C in 5% CO2. Vascular function was analysed using wire-myography. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh) (pEC50; normal glucose=7.66±0.10 vs high glucose=7.29±0.10, n=11-12, P<0.05) and the contraction induced by NOS inhibitor, L-NAME (200µM) (normal glucose=59.9±8.3% vs high glucose=38.7±4.3%, n=6, P<0.05), but had no effect on the endothelium-independent agonist, sodium nitroprusside (SNP)-mediated relaxation. Treatment with serelaxin restored endothelial function (pEC50; 7.83±0.11, n=11) but not NO availability. The presence of the cyclooxygenase (COX) inhibitor, indomethacin (1µM) (pEC50; control=7.29±0.10 vs indo=7.74±0.18, n=6-12, P<0.05) and a superoxide dismutase mimetic, tempol (10µM) (pEC50; control=7.29±0.10 vs tempol=7.82±0.05, n=6-12, P<0.01) significantly improved sensitivity to ACh in high glucose treated aortae, but had no effect in serelaxin treated aortae. This suggests that high glucose incubation alters the superoxide and COX-sensitive pathway, which was normalized by co-incubation with serelaxin. Neither high glucose incubation nor serelaxin treatment had an effect on cyclooxygenase 1 and 2 (Ptgs1, Ptgs2), prostacyclin synthase (PTGIS) and receptor (Ptgir) as well as thromboxane A2 receptor (Tbxa2r) mRNA expression. Importantly, production of prostacyclin was significantly (P<0.05) attenuated in high glucose treated aortae, which was prevented by serelaxin treatment. Our data show that serelaxin treatment for 3 days restores high glucose-induced endothelial dysfunction by ameliorating vasodilator prostacyclin production and possibly through the reduction of superoxide in the mouse aorta.


Subject(s)
Aorta, Abdominal/drug effects , Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Epoprostenol/metabolism , Relaxin/pharmacology , Acetylcholine/pharmacology , Animals , Aorta, Abdominal/physiology , Aorta, Thoracic/physiology , Cyclic N-Oxides/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Glucose/pharmacology , Humans , In Vitro Techniques , Indomethacin/pharmacology , Male , Mice , Mice, Inbred C57BL , Nitroprusside/pharmacology , Recombinant Proteins/pharmacology , Spin Labels , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...