Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Environ Res ; 251(Pt 2): 118687, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493853

ABSTRACT

The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.


Subject(s)
Membranes, Artificial , Microalgae , Polyethylene Terephthalates , Ultrafiltration , Wastewater , Polyethylene Terephthalates/chemistry , Microalgae/growth & development , Ultrafiltration/methods , Wastewater/chemistry , Wastewater/analysis , Waste Disposal, Fluid/methods , Environment , Bioreactors , Recycling
2.
Chemosphere ; 346: 140591, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918531

ABSTRACT

Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.


Subject(s)
Microalgae , Wastewater , Polyethylene Terephthalates , Ultrafiltration , Cross-Sectional Studies , Biomass , Lipids
3.
Mol Biotechnol ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938536

ABSTRACT

Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.

4.
Mol Biotechnol ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964101

ABSTRACT

Conventionally, increasing the yield of microalgal biomass has been the primary focus of research, while the significant protein reserve within this biomass has remained largely unexplored. This protein reserve possesses substantial value and versatility, offering a wide range of prospective applications and presenting an enticing chance for innovation and value enhancement for various sectors. Current study employed an innovative research approach that focused solely on the LCA of protein production potential from microalgal biomass, a lesser-explored aspects within this domain. Most environmental impact categories were shown to be significantly affected by cultivation phase because of the electrical obligation, followed by the harvesting and protein extraction phase. Still, the environmental aspect was seen to yield a minimal impact on global warming potential, i.e., 4 × 10-3 kg CO2, underscoring the ecologically favorable nature of the process. Conversely, the overall energy impact was seen to intensify with NEB of - 39.33 MJ and NER of 0.49, drawing attention to the importance of addressing the energy aspect to harness the full potential of microalgal protein production.

5.
Chemosphere ; 343: 140223, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734509

ABSTRACT

Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.

6.
Chemosphere ; 341: 139953, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37634592

ABSTRACT

Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.


Subject(s)
Microalgae , Wastewater , Animals , Photobioreactors , Biofuels , Biomass , Lipids , Life Cycle Stages
7.
Environ Res ; 233: 116533, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37394167

ABSTRACT

Changing the growth environment for microalgae can overall lead to the fundamental alteration in cellular biochemicals whilst attaching onto palm kernel expeller (PKE) waste to form adhesion complex in easing harvesting at stationary growth phase. This study had initially optimized the PKE dosage, light intensity and photoperiod in maximizing the attached microalgal productivity being attained at 0.72 g/g day. Lipid content increased progressively from pH 3 to pH 11, with the highest value observed at pH 11. Meanwhile, in terms of protein and carbohydrate contents, the highest values were obtained by cultivation medium of pH 5 with 9.92 g and 17.72 g, respectively followed by pH 7 with 9.16 g and 16.36 g, respectively. Moreover, the findings also suggested that the low pH mediums utilized polar interactions in the formation of complexes between PKE and microalgae, whereas at higher pH levels, the non-polar interactions became more significant. The work of attachment was thermodynamically favourable towards the attachment formation with values greater than zero which was also aligned with the microscopic surface topography, i.e., revealing a clustering pattern of microalgae colonizing the PKE surface. These findings contribute to comprehensive understanding of optimizing growth condition and harvesting strategy of attached microalgae in attaining the cellular biochemical components, facilitating the development of efficient and sustainable bioresource utilization.


Subject(s)
Microalgae , Biomass
8.
Chemosphere ; 338: 139526, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37459926

ABSTRACT

The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.


Subject(s)
Microalgae , Fermentation , Hydrogen/analysis , Fossil Fuels , Biofuels , Biomass
9.
Environ Res ; 218: 115013, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36495970

ABSTRACT

Food loss or waste is a far-reaching problem and has indeed become a worrying issue that is growing at an alarming rate. Fruits and vegetables are lost or wasted at the highest rate among the composition of food waste. Furthermore, the world is progressing toward sustainable development; hence, an efficient approach to valorise fruit and vegetable waste (FVW) is necessary. A simple phenotypic characterisation of microbiota isolated from the fermented FVW was conducted, and its effectiveness toward wastewater treatment was investigated. Presumptive identification suggested that yeast is dominant in this study, accounting for 85% of total isolates. At the genus level, the enriched medium's microbial community consists of Saccharomyces, Bacillus and Candida. Ammonium in the wastewater can enhance certain bacteria to grow, such as lactic acid bacteria, resulting in decreased NH4+ concentration at the end of the treatment to 0.5 mg/L. In addition, the fermented biowaste could reduce PO43- by 90% after the duration of treatment. Overall, FVW is a valuable microbial resource, and the microbial population enables a reduction in organic matter such as NH4+ and PO43-. This study helps explore the function and improve the effectiveness of utilising biowaste by understanding the microorganisms responsible for producing eco-enzyme.


Subject(s)
Refuse Disposal , Water Purification , Vegetables , Fruit , Wastewater , Fermentation
10.
Oncol Rep ; 48(6)2022 Dec.
Article in English | MEDLINE | ID: mdl-36281942

ABSTRACT

Melanoma is an extremely aggressive form of skin cancer that can spread to the lungs, brain, and liver, among other vital organs. Melanoma cells, unlike any other cancer cells, can produce significant amounts of melanin by a process known as melanogenesis, causing them to become heavily pigmented. Melanogenesis, specifically the melanin pigment, is well known for its ability to protect the skin from the harmful effects of UV light, which can lead to the development of skin cancer. Nevertheless, uncontrolled melanogenesis plays a role in the advancement of melanotic melanoma, and melanin pigments can reduce the effectiveness of radiotherapy and immunotherapy. Therefore, studies are being performed that focus on inhibiting melanogenesis to prevent melanoma metastasis. However, it is worth noting that, in addition to its UV­protective function, melanin also plays a role in preventing melanoma metastasis. Microphthalmia­associated transcription factor (MITF) and melanin have been demonstrated to attenuate the aggressiveness of melanoma by suppressing numerous essential metastatic processes. Eumelanin and pheomelanin (two types of melanin), which cause oxidative stress, can also prevent melanoma progression in the early stages. Hence, it is vital to explore the role of inducing melanogenesis rather than inhibiting melanogenesis in preventing melanoma metastasis.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanins , Microphthalmia-Associated Transcription Factor , Melanocytes
11.
Int J Biol Macromol ; 201: 93-103, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34973980

ABSTRACT

Hyperbranched polysaccharides (HBPSs) are the main components in cell wall and exopolysaccharide (EPS) of Pleurotus tuber-regium. To enhance the yield of these macromolecules, corn oil at 4% addition exhibited the best effect for production of mycelial biomass at 20.49 g/L and EPS at 0.59 g/L, which was 2.56 folds and 1.90 folds of the control, respectively. The treated hyphae were much thicker with smooth surface, while its cell wall content (43.81 ± 0.02%) was 1.96 times of the control (22.34 ± 0.01%). Moreover, a large number of lipid droplets could be visualized under the view of confocal laser scanning microscopy (CLSM). RNA-seq analysis revealed that corn oil could enter the cells and result in the up-regulation of genes on cell morphology and membrane permeability, as well as the down-regulation on expression level of polysaccharide hydrolase and genes involved in the MAPK pathway, all of which probably contribute to the increase of polysaccharides production.


Subject(s)
Corn Oil , Pleurotus , Biomass , Mycelium/metabolism , Pleurotus/metabolism , Polysaccharides/metabolism
12.
Chemosphere ; 287(Pt 4): 132369, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34582930

ABSTRACT

Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Environmental Pollution/analysis , Environmental Pollution/prevention & control , Humans , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
13.
Food Chem Toxicol ; 158: 112607, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653554

ABSTRACT

Microalgae metabolites include biologically active compounds with therapeutic effects such as anticancer, anti-inflammatory and immunomodulation effects. One of the most recent focuses is on utilizing microalgae lipid-based biologically active compounds in food applications. However, most microalgae biological active compounds in their natural forms have common drawbacks like low solubility, low physicochemical stability and strong susceptibility to degradation, which significantly limits their application in foods, therefore, it is important to find solutions to retain their functional properties. In the present work, a comprehensive review on multi-product biorefinery was carried out from upstream processing stage to downstream processing stage, and identify critical processes and factors that impact bioactive material acquisition and retention. Furthermore, since nanoencapsulation technology emerges as an effective solution for microalgae nutraceutical product's retention, this work also focus on the nanoparticle perspective and comprehensively reviews the current nanoencapsulation solutions of the microalgae bioactive extract products. The aim is to depict advances in the formulations of microalage bioactive nanoparticles and provide a critical analysis of the reported nanoparticle formation. Overall, through the investigation of microalgae from biomass to bioactive nanoparticles, we aim to facilitate microalgae nutraceuticals incorporation as high value-added ingredients in more functional food that can improve human health.


Subject(s)
Biological Products , Dietary Supplements , Drug Compounding , Functional Food , Microalgae/chemistry , Nanoparticles , Biofuels , Biomass , Humans
14.
Biomed Pharmacother ; 144: 112333, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678724

ABSTRACT

Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Blood Glucose/drug effects , Diabetes Mellitus/drug therapy , Garcinia mangostana , Glycoside Hydrolase Inhibitors/pharmacology , Insulin Resistance , PPAR gamma/metabolism , Plant Extracts/pharmacology , Xanthones/pharmacology , 3T3-L1 Cells , Animals , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus/enzymology , Diet, High-Fat , Disease Models, Animal , Down-Regulation , Garcinia mangostana/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/toxicity , Male , Mice , Mice, Inbred ICR , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Signal Transduction , Time Factors , Xanthones/toxicity , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
15.
Bioresour Bioprocess ; 8(1): 7, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-38650242

ABSTRACT

The efficacy of alcohol/sugar aqueous biphasic (ABS) system on protein extraction was investigated. A model protein, bovine serum albumin (BSA), was adopted to evaluate the effects of types and concentration of phase-forming components, protein concentration, and system pH on the protein partition efficiency. The 1-propanol/maltose ABS exhibited an overall better partition efficiency of BSA to the alcohol-rich top phase. A maximum partition coefficient (K) of 20.01 ± 0.05 and recovery yield (Y) of 95.42% ± 0.01% of BSA were achieved with 35% (w/w) 1-propanol/22% (w/w) maltose ABS at pH 5.0 for 10% (w/w) BSA load. The K and Y of BSA in 1-propanol/maltose ABS was slightly improved with the addition of 3% (w/w) of ionic liquid, 1-butyl-3-methylimidazolium bromide ([Bmim]Br) as the adjuvant that could provide protein stabilizing effect. The Fourier Transform Infrared Spectrum (FTIR) analysis revealed that the protein structure remained unaltered upon the separation process.

16.
Int J Mol Sci ; 22(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379248

ABSTRACT

Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.


Subject(s)
Curcumin/analogs & derivatives , Eye Diseases/drug therapy , Curcumin/metabolism , Curcumin/therapeutic use , Humans , Ophthalmology
17.
Crit Rev Biotechnol ; 40(4): 555-569, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32283954

ABSTRACT

Aqueous biphasic system (ABS) is widely used in the recovery, extraction, purification and separation of proteins, enzymes, nucleic acids and antibodies. The ABS with high water content and low interfacial tension offers a biocompatible environment for the recovery of labile biomolecules. Process integration can be achieved using ABS by incorporating multiple-steps of purification, concentration and purification of biomolecules in a single-step operation which often results in high product recovery yield and purity. Conventional ABS is usually formed by aqueous solutions of two polymers or a polymer and a salt above a critical concentration. The high viscosity of polymer-based ABS causes slow phase separation and hinders the mass transfer of biomolecules, whereas polymer/salt ABS is characterized by high ionic strength resulting in the loss of bioactivity of recovered biomolecules. These limitations have encouraged the development of novel ABS which is more cost-effective for various biotechnological applications. This review discusses the characteristics and mechanisms of several types of emerging unconventional ABS using phase-forming components such as hyperbranched polymers, special salts, surfactants, magnetic fields, the addition of nanoparticles and incorporation of various solvent. Moreover, several novel applications of ABS for different separation purposes such as microfluidic-based ABS, ABS bioreactors, application of ABS as an analytical tool, and ABS micropatterning are discussed in this review. In the last section of this review, a comprehensive summary of process integration using ABS for extractive fermentations, bioconversion, crystallization and precipitation is also supplemented for the comprehensive review of various types and applications of ABS in recent years.


Subject(s)
Biotechnology/methods , Bioreactors , Liquid-Liquid Extraction , Microfluidics
18.
Appl Biochem Biotechnol ; 191(1): 273-283, 2020 May.
Article in English | MEDLINE | ID: mdl-32335865

ABSTRACT

Garcinia mangostana pericarp is a good source of natural antioxidants with numerous functional properties. The conventional approaches for the recovery of antioxidants from Garcinia mangostana pericarp require long processing time and high temperature, which may cause degradation or loss of bioactivity of antioxidants, and often result in low recovery efficiency. In this study, the extraction of antioxidants from Garcinia mangostana pericarp was investigated using a polyethylene glycol (PEG)/citrate aqueous biphasic system (ABS) with the addition of surfactants. The optimum condition for the recovery of antioxidants was achieved in PEG 1000/citrate ABS of pH 8 with tie-line length (TLL) of 48.3% (w/w), volume ratio (VR) of 1.6, 0.2% (w/w) sample loading and addition of 1.0% (w/w) Tween 85. The antioxidants were recovered in the PEG-rich top phase with a high K value of 18.23 ± 0.33 and a recovery yield of 92.01% ± 0.09. The findings suggested that the addition of surfactants to polymer/salt ABS can enhance the recovery of antioxidants from Garcinia mangostana pericarps by conserving the antioxidative properties.


Subject(s)
Antioxidants , Garcinia mangostana/chemistry , Polyethylene Glycols/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Hydrogen-Ion Concentration
19.
Appl Biochem Biotechnol ; 191(1): 376-386, 2020 May.
Article in English | MEDLINE | ID: mdl-31907777

ABSTRACT

Cytochrome c is a small water-soluble protein that is abundantly found in the mitochondrial intermembrane space of microorganism, plants and mammalians. Ionic liquids (ILs)-based aqueous two-phase electrophoresis system (ATPES) was introduced in this study to investigate the partition efficiency of cytochrome c to facilitate subsequent development of two-phase electrophoresis for the separation of cytochrome c from microbial fermentation. The 1-Hexyl-3-methylimidazolium bromide, (C6mim)Br and potassium citrate salt were selected as the phase-forming components. Effects of phase composition; position of electrodes; pH and addition of neutral salt on the partition efficiency of cytochrome c in the ATPES were evaluated. Highest partition coefficient (K = 179.12 ± 0.82) and yield of cytochrome c in top phase (YT = 99.63% ± 0.00) were recorded with IL/salt ATPES composed of 30% (w/w) (C6mim)Br and 20% (w/w) potassium citrate salt of pH 7 and 3.0% (w/w) NaCl addition with anode at the bottom phase and cathode at the top phase. The SDS-PAGE profile revealed that cytochrome c with a molecular weight of 12 kDa was preferably partitioned to the IL-rich top phase. Present findings suggested that the single-step ATPES is a potential separation approach for the recovery of cytochrome c from microbial fermentation. Graphical Abstract.


Subject(s)
Bacterial Proteins , Borates/chemistry , Cytochromes c , Electrophoresis , Imidazoles/chemistry , Ionic Liquids/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Cytochromes c/chemistry , Cytochromes c/isolation & purification
20.
J Biosci Bioeng ; 129(2): 237-241, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31629635

ABSTRACT

Aqueous biphasic flotation (ABF) integrates aqueous biphasic system (ABS) and solvent sublation for recovery of target biomolecules. The feasibility of the alcohol/salt ABF for exclusive partition of cytochrome c to one specific phase of the system was investigated. Aliphatic alcohols of different carbon chain length (ethanol, 1-propanol and 2-propanol) and salts (sulfate, phosphate and citrate) were used for the phase formation. The effects of phase composition, concentration of sample loading, pH, flotation time and flow rate of the system on the partition efficiency of cytochrome c were determined. Cytochrome c was exclusively partitioned to the alcohol-rich top phase of the ABF of 18% (w/w) ethanol and 26% (w/w) ammonium sulfate with pH 6 and 20% (w/w) of sample loading. Highest partition coefficient (K) of 6.85 ± 0.21 and yield (YT) of 99.40% ± 0.02 were obtained with optimum flotation rate of 10 mL/min and flow rate of 10 min.


Subject(s)
Cytochromes c/chemistry , 1-Propanol/chemistry , 2-Propanol/chemistry , Ammonium Sulfate/chemistry , Animals , Ethanol/chemistry , Horses , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...