Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 14(2): 503-11, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23252421

ABSTRACT

A lightweight and strong porous cellulose material has been prepared by drying aqueous foams stabilized with surface-modified nanofibrillated cellulose (NFC). This material differs from other dry, particle stabilized foams in that renewable cellulose is used as stabilizing particles. Confocal microscopy and high speed video imaging show that the octylamine-coated, rod-shaped NFC nanoparticles residing at the air-liquid interface prevent the air bubbles from collapsing or coalescing. Stable wet foams can be achieved at solids content around 1% by weight. Careful removal of the water results in a cellulose-based material with a porosity of 98% and a density of 30 mg cm(-3). These porous cellulose materials have a higher Young's modulus than porous cellulose materials made from freeze-drying, at comparable densities, and have a compressive energy absorption of 56 kJ m(-3) at 80% strain. Measurement with the aid of an autoporosimeter revealed that most pores are in the range of 300 to 500 µm.


Subject(s)
Cellulose/chemistry , Nanofibers , Polymers/chemical synthesis , Amines/chemistry , Desiccation , Elastic Modulus , Materials Testing , Nanoparticles , Polymers/chemistry , Porosity , Surface Properties , Water
2.
J Colloid Interface Sci ; 319(1): 144-51, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18067910

ABSTRACT

Titania nanoparticles have been incorporated into spherical mesoporous silica powders by an aerosol-assisted synthesis process from both aqueous and ethanol-based precursor dispersions. Transmission electron microscopy (TEM) showed that the titania nanoparticles exist as single particles or small aggregates within the mesoporous carrier particles and analysis of the nitrogen adsorption isotherms proved that the pore blocking of the particles is small. Particle size and zeta potential measurements showed that the addition of tetraethoxysiloxane (TEOS), and also hexadecyl trimethyl ammonium bromide (C16TAB) induced flocculation of the TiO2 nanoparticles. The higher yield and narrower size distribution of the composite powder produced from ethanol-based dispersions compared to the aqueous dispersions could be related to a smaller degree of aggregation, indicated by rheological measurements.


Subject(s)
Aerosols/chemistry , Colloids/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Particle Size , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...