Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Hered ; 110(7): 844-856, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31554011

ABSTRACT

Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.


Subject(s)
Dipterocarpaceae/classification , Dipterocarpaceae/genetics , Genetic Variation , Genetics, Population , Haplotypes , Alleles , Bayes Theorem , Conservation of Natural Resources , DNA, Chloroplast , Microsatellite Repeats , Rainforest
2.
Mol Ecol ; 22(8): 2264-79, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23432376

ABSTRACT

Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.


Subject(s)
Dipterocarpaceae/genetics , Evolution, Molecular , Genetic Speciation , Phylogeography , Borneo , Cell Nucleus/genetics , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , Genetics, Population , Haplotypes , Indonesia , Malaysia , Molecular Sequence Data , Sequence Analysis, DNA , Tropical Climate
3.
J Hered ; 104(1): 115-26, 2013.
Article in English | MEDLINE | ID: mdl-23132907

ABSTRACT

Tectonic movements, climatic oscillations, and marine transgressions during the Cenozoic have had a dramatic effect on the biota of the tropical rain forest. This study aims to reveal the phylogeography and evolutionary history of a Peninsular Malaysian endemic tropical timber species, Neobalanocarpus heimii (Dipterocarpaceae). A total of 32 natural populations of N. heimii, with 8 samples from each population were investigated. Fifteen haplotypes were identified from five noncoding chloroplast DNA (cpDNA) regions. Overall, two major genealogical cpDNA lineages of N. heimii were elucidated: a widespread southern and a northern region. The species is predicted to have survived in multiple refugia during climatic oscillations: the northwestern region (R1), the northeastern region (R2), and the southern region (R3). These putative glacial refugia exhibited higher levels of genetic diversity, population differentiation, and the presence of unique haplotypes. Recolonization of refugia R1 and R2 could have first expanded into the northern region and migrated both northeastwards and northwestwards. Meanwhile, recolonization of N. heimii throughout the southern region could have commenced from refugia R3 and migrated toward the northeast and northwest, respectively. The populations of Tersang, Pasir Raja, and Rotan Tunggal exhibited remarkably high haplotype diversity, which could have been the contact zones that have received an admixture of gene pools from the northerly and also southerly regions. As a whole, the populations of N. heimii derived from glacial refugia and contact zones should be considered in the conservation strategies in order to safeguard the long-term survival of the species.


Subject(s)
Biological Evolution , Demography , Dipterocarpaceae/genetics , Genetic Variation , Phylogeny , Base Sequence , DNA, Chloroplast/genetics , Geography , Haplotypes/genetics , Malaysia , Molecular Sequence Data , Phylogeography , Population Dynamics , Sequence Analysis, DNA
4.
Mol Ecol ; 13(3): 657-69, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14871369

ABSTRACT

Analyses of the spatial distribution pattern, spatial genetic structure and of genetic diversity were carried out in two tropical tree species with contrasting breeding systems and different ploidy levels using a 50-ha demographic plot in a lowland dipterocarp forest in Peninsular Malaysia. Shorea leprosula is a diploid and predominantly outcrossed species, whereas S. ovalis ssp. sericea is an autotetraploid species with apomictic mode of reproduction. Genetic diversity parameters estimated for S. leprosula using microsatellite were consistently higher than using allozyme. In comparisons with S. leprosula and other tropical tree species, S. ovalis ssp. sericea also displayed relatively high levels of genetic diversity. This might be explained by the lower pressure of genetic drift due to tetrasomic inheritance, and for autotetraploids each locus can accommodate up to four different alleles and this allows maintenance of more alleles at individual loci. The observed high levels of genetic diversity in S. ovalis ssp. sericea can also be due to a random retention of more heterogeneous individuals in the past, and the apomictic mode of reproduction might be an evolutionary strategy, which allows the species to maintain high levels of genetic diversity. The spatial distribution pattern analyses of both species showed significant levels of aggregation at small and medium but random distribution at the big diameter-class. The decrease in magnitude of spatial aggregation from small- to large-diameter classes might be due to compensatory mortality during recruitment and survival under competitive thinning process. Spatial genetic structure analyses for both species revealed significant spatial genetic structure for short distances in all the three diameter-classes. The magnitude of spatial genetic structure in both species was observed to be decreasing from smaller- to larger-diameter classes. The high spatial genetic structuring observed in S. ovalis ssp. sericea at the small-diameter class is due primarily to limited seed dispersal and apomictic mode of reproduction. The similar observation in S. leprosula, however, can be explained by limited seed and pollen dispersal, which supports further the fact that the species is pollinated by weak fliers, mainly of Thrips and Megalurothrips in the lowland dipterocarp forest.


Subject(s)
Demography , Ericales/genetics , Genetic Variation , Genetics, Population , Trees , Age Factors , Ericales/physiology , Gene Frequency , Isoenzymes , Malaysia , Microsatellite Repeats/genetics , Ploidies , Reproduction/physiology , Tropical Climate
5.
Am J Bot ; 89(3): 447-59, 2002 Mar.
Article in English | MEDLINE | ID: mdl-21665641

ABSTRACT

A field survey of Virgin Jungle Reserve (VJR) compartments in Peninsular Malaysia allowed us to identify six populations of Intsia palembanica for this study. These were Pasoh Forest Reserve (FR) (Pasoh), Sungai Lalang FR (Lalang), Bukit Lagong FR (Lagong), Bubu FR (Bubu), Bukit Kinta FR (Kinta), and Bukit Perangin FR (Perangin). About 40 adult individuals were sampled in each population. In addition, progeny arrays were collected from nine mother plants at Lagong for a mating system study. A total of nine allozymes, encoded by 14 putative gene loci, were consistently resolved in I. palembanica. The mating system study showed that the species exhibited a mixed-mating system, with multilocus outcrossing rate of 0.766. The levels of diversity were comparably high (mean number of alleles per polymorphic locus = 2.4, mean effective number of alleles per polymorphic locus = 1.64, and mean expected heterozygosity (H(e)) = 0.242), and the majority of the diversity was partitioned within population (G(ST) = 0.040 and F(ST) = 0.048). Significant levels of inbreeding were detected in Bubu and Perangin. Probability tests of recent effective population size reduction using the Infinite Allele Model showed the occurrence of genetic bottlenecks on Lalang and Kinta. Two genetically unique populations (Pasoh and Perangin) were inferred using jackknife analysis. By using the neutral mutation rates, effective population size (N(e)) to maintain the H(e) was 80-800 000 individuals. A simulation study based on pooled samples, however, circumscribed the N(e) to 200 and 210 individuals. Implications of the study for managing the species and the VJRs are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL