Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 7386, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149711

ABSTRACT

Dehumidification is one of the key challenges facing the air conditioning (AC) industry in the treatment of moist air. Over many decades, the dual role of heat exchangers of AC chillers for the sensible and latent cooling of space has hindered the thermal-lift reduction in the refrigeration cycle due to the requirements of water vapor removal at dew-point and heat rejection to the ambient air. These practical constraints of AC chillers have resulted in the leveling of energy efficiency of mechanical vapor compressors (MVC) for many decades. One promising approach to energy efficiency improvement is the decoupling of dehumidification from sensible processes so that innovative but separate processes can be applied. In this paper, an advanced microwave dehumidification method is investigated in the laboratory, where the microwave (2.45 GHz) energy can be irradiated onto the dipole structure of water vapor molecules, desorbing rapidly from the pores of adsorbent. Results show a significant improvement in performance for microwave dehumidification, up to fourfold, as compared to data available in the literature.

2.
Water Res ; 207: 117794, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34749104

ABSTRACT

As a byproduct of desalination plants, brine is increasingly becoming a threat to the environment, and the design of zero-liquid discharge (ZLD) systems is gaining increasing attention. Existing ZLD systems are limited by a high energy intensity and high plant costs of their crystallizers. This study proposes a novel crystallization method based on the humidification-dehumidification (HDH) process, which exhibits the advantages of a low energy consumption, low component costs and a reduced scaling and fouling potential. A simple experimental setup is first designed to demonstrate the feasibility of the proposed system. Brine concentration and salt crystallization are successfully achieved with air heated to 40 °C as the heat source. Afterwards, a thermo-economic analysis is conducted for the whole system. The specific thermal energy and electricity consumption levels are found to range from 700-900 and 5-11 kJ, respectively, per kg of feed brine. The energy consumption is 56% lower than that of a conventional evaporative crystallizer, and the initial plant cost is reduced by 58%.


Subject(s)
Water Purification , Crystallization , Hot Temperature , Osmosis , Sodium Chloride
3.
Front Chem ; 8: 601132, 2020.
Article in English | MEDLINE | ID: mdl-33575247

ABSTRACT

Understanding adsorption phenomena is essential to optimize and customize the energy transformation in numerous industrial and environmental processes. The complex and heterogeneous structure of the adsorbent surface and the distinct interaction of adsorbent-adsorbate pairs are attributed to the diverse response of adsorption phenomena, measured by the state diagrams of adsorption uptake known as adsorption isotherms. To understand various forms of adsorption isotherms, the surface characteristics of the adsorbent surface with the heterogeneity of adsorption energy sites must be analyzed so that they can be modified for the tailored response of the material. Conventionally, such material synthesis is based on chemical recipes or post-treatment. However, if the adsorbent's surface characteristics and heterogeneity are known, then a directed change in the material structure can be planned for the desired results in the adsorption processes. In this paper, a theoretical and mathematical methodology is discussed to analyze the structure of various adsorbents in terms of the distribution of their adsorption energy sites. The change in their surface is then analyzed, which results in the tailored or customized response of the material.

4.
Sci Rep ; 9(1): 8773, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31217531

ABSTRACT

The distinct interaction of adsorbate-adsorbent pair is attributed to the characteristics of heterogeneous surface and structure of porous materials. In material science, the porous structure is modified in response to certain applications. Backed by the chemical recipes, such conventional approach rely on the material characterization techniques to verify the resultant porous structure and its interaction with the adsorbate molecules. Such a practice is best assisted by a theoretical approach that can pre-define the required heterogeneous structure of porous surfaces and its role in selective adsorbate-adsorbent interaction, to facilitate material scientists for the synthesis of only those energy sites which can enhance or tailor its responses for a certain application or target. It has been reported here that the understanding of porous structure in terms of energy sites and their distribution, which controls the adsorbate-adsorbent interaction, is the key for porous surface engineering. Understanding of such porous surface characteristics empower the scientists to alter kinetics and thermodynamics of material according to the 'sweet spots' of an application. Therefore, a theoretical framework, to express the energy sites and their distribution over the porous heterogeneous surface, is demonstrated here as a prerequisite criterion for porous material development and characterization.

5.
Entropy (Basel) ; 21(1)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-33266800

ABSTRACT

For future sustainable seawater desalination, the importance of achieving better energy efficiency of the existing 19,500 commercial-scale desalination plants cannot be over emphasized. The major concern of the desalination industry is the inadequate approach to energy efficiency evaluation of diverse seawater desalination processes by omitting the grade of energy supplied. These conventional approaches would suffice if the efficacy comparison were to be conducted for the same energy input processes. The misconception of considering all derived energies as equivalent in the desalination industry has severe economic and environmental consequences. In the realms of the energy and desalination system planners, serious judgmental errors in the process selection of green installations are made unconsciously as the efficacy data are either flawed or inaccurate. Inferior efficacy technologies' implementation decisions were observed in many water-stressed countries that can burden a country's economy immediately with higher unit energy cost as well as cause more undesirable environmental effects on the surroundings. In this article, a standard primary energy-based thermodynamic framework is presented that addresses energy efficacy fairly and accurately. It shows clearly that a thermally driven process consumes 2.5-3% of standard primary energy (SPE) when combined with power plants. A standard universal performance ratio-based evaluation method has been proposed that showed all desalination processes performance varies from 10-14% of the thermodynamic limit. To achieve 2030 sustainability goals, innovative processes are required to meet 25-30% of the thermodynamic limit.

6.
Sci Rep ; 7(1): 10634, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878385

ABSTRACT

The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

7.
Ground Water ; 55(3): 316-326, 2017 05.
Article in English | MEDLINE | ID: mdl-27753069

ABSTRACT

An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.


Subject(s)
Groundwater , Seawater , Water Purification , Filtration , Saudi Arabia
8.
Water Res ; 100: 7-19, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27176649

ABSTRACT

In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.


Subject(s)
Membranes, Artificial , Solar Energy , Distillation , Sunlight , Water Purification
9.
Ultrason Sonochem ; 29: 186-93, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26584997

ABSTRACT

Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30.

10.
Phys Chem Chem Phys ; 13(27): 12559-70, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21670804

ABSTRACT

We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.

11.
Langmuir ; 25(13): 7359-67, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19469548

ABSTRACT

The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent+adsorbate system (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (DeltaH degrees) at the Henry regime. In this paper, we have established the definitive relation between Ai and DeltaH degrees for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites+hydrogen, and (ii) activated carbons+methane systems. The proposed theoretical framework of Ai and DeltaH degrees provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake.

12.
Langmuir ; 25(4): 2204-11, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19140706

ABSTRACT

Thermodynamic property surfaces for a single-component adsorbent+adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl2-in-silica gel+water system for cooling applications, and (ii) activated carbon (Maxsorb III)+methane system for gas storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...