Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25071457

ABSTRACT

Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute's Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.


Subject(s)
Brain/anatomy & histology , Gene Expression Regulation/physiology , Integrases/metabolism , Neurons/metabolism , Recombination, Genetic , Animals , Brain/metabolism , Gene Expression Regulation/drug effects , Integrases/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/classification , Tamoxifen/pharmacology , Trimethoprim/pharmacology
2.
Int Rev Neurobiol ; 104: 159-82, 2012.
Article in English | MEDLINE | ID: mdl-23195315

ABSTRACT

Large-scale databases of the brain are providing content to the neuroscience community through molecular, cellular, functional, and connectomic data. Organization, presentation, and maintenance requirements are substantial given the complexity, diverse modalities, resolution, and scale. In addition to microarrays, magnetic resonance imaging, and RNA sequencing, several in situ hybridization databases have been constructed due to their value in spatially localizing cellular expression. Scalable techniques for processing and presenting these data for maximum utility in viewing and analysis are key for end user value. We describe methods and use cases for the Allen Brain Atlas resources of the adult and developing mouse.


Subject(s)
Brain Mapping , Brain/metabolism , Computational Biology , Databases, Factual , Gene Expression/physiology , In Situ Hybridization , Animals , Brain/anatomy & histology , Mice
3.
Front Neurosci ; 4: 165, 2010.
Article in English | MEDLINE | ID: mdl-21088695

ABSTRACT

Sleep deprivation (SD) leads to a suite of cognitive and behavioral impairments, and yet the molecular consequences of SD in the brain are poorly understood. Using a systematic immediate-early gene (IEG) mapping to detect neuronal activation, the consequences of SD were mapped primarily to forebrain regions. SD was found to both induce and suppress IEG expression (and thus neuronal activity) in subregions of neocortex, striatum, and other brain regions. Laser microdissection and cDNA microarrays were used to identify the molecular consequences of SD in seven brain regions. In situ hybridization (ISH) for 222 genes selected from the microarray data and other sources confirmed that robust molecular changes were largely restricted to the forebrain. Analysis of the ISH data for 222 genes (publicly accessible at http://sleep.alleninstitute.org) provided a molecular and anatomic signature of the effects of SD on the brain. The suprachiasmatic nucleus (SCN) and the neocortex exhibited differential regulation of the same genes, such that in the SCN genes exhibited time-of-day effects while in the neocortex, genes exhibited only SD and waking (W) effects. In the neocortex, SD activated gene expression in areal-, layer-, and cell type-specific manner. In the forebrain, SD preferentially activated excitatory neurons, as demonstrated by double-labeling, except for striatum which consists primarily of inhibitory neurons. These data provide a characterization of the anatomical and cell type-specific signatures of SD on neuronal activity and gene expression that may account for the associated cognitive and behavioral effects.

4.
Nat Neurosci ; 13(1): 133-40, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20023653

ABSTRACT

The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.


Subject(s)
Brain/metabolism , Integrases/genetics , Recombination, Genetic , Animals , Bacterial Proteins/genetics , Brain/cytology , Dendrites/metabolism , Gene Transfer Techniques , Integrases/physiology , Luminescent Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Neurons/cytology , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Tamoxifen/pharmacology , Tissue Distribution , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Neuron ; 60(6): 1010-21, 2008 Dec 26.
Article in English | MEDLINE | ID: mdl-19109908

ABSTRACT

Availability of genome-scale in situ hybridization data allows systematic analysis of genetic neuroanatomical architecture. Within the hippocampus, electrophysiology and lesion and imaging studies demonstrate functional heterogeneity along the septotemporal axis, although precise underlying circuitry and molecular substrates remain uncharacterized. Application of unbiased statistical component analyses to genome-scale hippocampal gene expression data revealed robust septotemporal molecular heterogeneity, leading to the identification of a large cohort of genes with robust regionalized hippocampal expression. Manual mapping of heterogeneous CA3 pyramidal neuron expression patterns demonstrates an unexpectedly complex molecular parcellation into a relatively coherent set of nine expression domains in the septal/temporal and proximal/distal axes with reciprocal, nonoverlapping boundaries. Unique combinatorial profiles of adhesion molecules within these domains suggest corresponding differential connectivity, which is demonstrated for CA3 projections to the lateral septum using retrograde labeling. This complex, discrete molecular architecture provides a novel paradigm for predicting functional differentiation across the full septotemporal extent of the hippocampus.


Subject(s)
Brain Mapping , Gene Expression Regulation, Developmental/physiology , Genomics , Hippocampus/anatomy & histology , Hippocampus/physiology , Animals , Animals, Newborn , Cholera Toxin/metabolism , Imaging, Three-Dimensional , In Situ Hybridization/methods , Male , Mice , Mice, Inbred C57BL , Models, Biological , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Principal Component Analysis , Septum Pellucidum/anatomy & histology , Septum Pellucidum/metabolism , Temporal Lobe/anatomy & histology , Temporal Lobe/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...