Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(36): e2304851120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639608

ABSTRACT

Memory formation and forgetting unnecessary memory must be balanced for adaptive animal behavior. While cyclic AMP (cAMP) signaling via dopamine neurons induces memory formation, here we report that cyclic guanine monophosphate (cGMP) signaling via dopamine neurons launches forgetting of unconsolidated memory in Drosophila. Genetic screening and proteomic analyses showed that neural activation induces the complex formation of a histone H3K9 demethylase, Kdm4B, and a GMP synthetase, Bur, which is necessary and sufficient for forgetting unconsolidated memory. Kdm4B/Bur is activated by phosphorylation through NO-dependent cGMP signaling via dopamine neurons, inducing gene expression, including kek2 encoding a presynaptic protein. Accordingly, Kdm4B/Bur activation induced presynaptic changes. Our data demonstrate a link between cGMP signaling and synapses via gene expression in forgetting, suggesting that the opposing functions of memory are orchestrated by distinct signaling via dopamine neurons, which affects synaptic integrity and thus balances animal behavior.


Subject(s)
Dopaminergic Neurons , Proteomics , Animals , Second Messenger Systems , Signal Transduction , Memory , Drosophila , Guanine , Histone Demethylases
2.
Nat Commun ; 12(1): 628, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504795

ABSTRACT

Consolidated memory can be preserved or updated depending on the environmental change. Although such conflicting regulation may happen during memory updating, the flexibility of memory updating may have already been determined in the initial memory consolidation process. Here, we explored the gating mechanism for activity-dependent transcription in memory consolidation, which is unexpectedly linked to the later memory updating in Drosophila. Through proteomic analysis, we discovered that the compositional change in the transcriptional repressor, which contains the histone deacetylase Rpd3 and CoRest, acts as the gating mechanism that opens and closes the time window for activity-dependent transcription. Opening the gate through the compositional change in Rpd3/CoRest is required for memory consolidation, but closing the gate through Rpd3/CoRest is significant to limit future memory updating. Our data indicate that the flexibility of memory updating is determined through the initial activity-dependent transcription, providing a mechanism involved in defining memory state.


Subject(s)
Co-Repressor Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Histone Deacetylase 1/metabolism , Memory/physiology , Transcription, Genetic , Acetylation , Animals , Behavior, Animal , Brain/physiology , Genetic Loci , Mushroom Bodies/innervation , Protein Binding , Protein Interaction Mapping , Protein Processing, Post-Translational , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...