Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36837832

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a dedifferentiation program in which polarized, differentiated epithelial cells lose their cell-cell adhesions and transform into matrix-producing mesenchymal cells. EMT of retinal pigment epithelial (RPE) cells plays a crucial role in many retinal diseases, including age-related macular degeneration, proliferative vitreoretinopathy, and diabetic retinopathy. This dynamic process requires complex metabolic reprogramming to accommodate the demands of this dramatic cellular transformation. Both transforming growth factor-beta 2 (TGFß2) and tumor necrosis factor-alpha (TNFα) have the capacity to induce EMT in RPE cells; however, little is known about their impact on the RPE metabolome. Untargeted metabolomics using high-resolution mass spectrometry was performed to reveal the metabolomic signatures of cellular and secreted metabolites of primary human fetal RPE cells treated with either TGFß2 or TNFα for 5 days. A total of 638 metabolites were detected in both samples; 188 were annotated as primary metabolites. Metabolomics profiling showed distinct metabolomic signatures associated with TGFß2 and TNFα treatment. Enrichment pathway network analysis revealed alterations in the pentose phosphate pathway, galactose metabolism, nucleotide and pyrimidine metabolism, purine metabolism, and arginine and proline metabolism in TNFα-treated cells compared to untreated control cells, whereas TGFß2 treatment induced perturbations in fatty acid biosynthesis metabolism, the linoleic acid pathway, and the Notch signaling pathway. These results provide a broad metabolic understanding of the bioenergetic rewiring processes governing TGFß2- and TNFα-dependent induction of EMT. Elucidating the contributions of TGFß2 and TNFα and their mechanistic differences in promoting EMT of RPE will enable the identification of novel biomarkers for diagnosis, management, and tailored drug development for retinal fibrotic diseases.

2.
Sci Adv ; 8(19): eabn5907, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35544571

ABSTRACT

Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.


Subject(s)
Grain Proteins , MicroRNAs , Alleles , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Genes, Homeobox , Grain Proteins/metabolism , Inflorescence/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum
3.
MicroPubl Biol ; 20212021 Jun 01.
Article in English | MEDLINE | ID: mdl-34189424

ABSTRACT

Plant organ size control is an essential process of plant growth and development. The regulation of plant organ size involves a complicated network of genetic, molecular interactions, as well as the interplay of environmental factors. Here, we report a temperature-sensitive hypocotyl elongation EMS-generated mutant, hereby referred to as elongated hypocotyl under high-temperature (elh). The elongated hypocotyl phenotype was prominent when the elh seedlings were grown at high temperature, 28°C, but not under the growth temperature of 21°C. We observed significantly larger organ sizes in elh plants, including cotyledons, petals and seeds. In elh plants, the cell sizes in cotyledons and petals were significantly larger than wild type. By measuring the cell density and organ area of cotyledons, petals and mature dissected embryos, we found no differences in total cell numbers in any organ indicating that cell expansion rather than cell proliferation was perturbed in elh. elh plants produced leaves at a slower rate than wild type plants, suggesting that perturbing the balance between cell division and cell expansion is linked to the developmental rate at which leaves are produced.

4.
Methods Mol Biol ; 2298: 135-151, 2021.
Article in English | MEDLINE | ID: mdl-34085243

ABSTRACT

RNA has coevolved with numerous posttranscriptional modifications to sculpt interactions with proteins and other molecules. One of these modifications is 5-methylcytosine (m5C) and mapping the position and quantifying the level in different types of cellular RNAs and tissues is an important objective in the field of epitranscriptomics. Both in plants and animals bisulfite conversion has long been the gold standard for detection of m5C in DNA but it can also be applied to RNA. Here, we detail methods for highly reproducible bisulfite treatment of RNA, efficient locus-specific PCR amplification, detection of candidate sites by sequencing on the Illumina MiSeq platform, and bioinformatic calling of non-converted sites.


Subject(s)
5-Methylcytosine/metabolism , Nucleotides/genetics , Polymerase Chain Reaction/methods , RNA/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods , RNA Processing, Post-Transcriptional/genetics , Sulfites/metabolism
5.
PLoS One ; 14(11): e0225064, 2019.
Article in English | MEDLINE | ID: mdl-31756231

ABSTRACT

Modified nucleosides in tRNAs are critical for protein translation. N1-methylguanosine-37 and N1-methylinosine-37 in tRNAs, both located at the 3'-adjacent to the anticodon, are formed by Trm5. Here we describe Arabidopsis thaliana AtTRM5 (At3g56120) as a Trm5 ortholog. Attrm5 mutant plants have overall slower growth as observed by slower leaf initiation rate, delayed flowering and reduced primary root length. In Attrm5 mutants, mRNAs of flowering time genes are less abundant and correlated with delayed flowering. We show that AtTRM5 complements the yeast trm5 mutant, and in vitro methylates tRNA guanosine-37 to produce N1-methylguanosine (m1G). We also show in vitro that AtTRM5 methylates tRNA inosine-37 to produce N1-methylinosine (m1I) and in Attrm5 mutant plants, we show a reduction of both N1-methylguanosine and N1-methylinosine. We also show that AtTRM5 is localized to the nucleus in plant cells. Proteomics data showed that photosynthetic protein abundance is affected in Attrm5 mutant plants. Finally, we show tRNA-Ala aminoacylation is not affected in Attrm5 mutants. However the abundance of tRNA-Ala and tRNA-Asp 5' half cleavage products are deduced. Our findings highlight the bifunctionality of AtTRM5 and the importance of the post-transcriptional tRNA modifications m1G and m1I at tRNA position 37 in general plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Cell Nucleus/metabolism , Guanine/metabolism , Inosine/metabolism , tRNA Methyltransferases/metabolism , Arabidopsis/genetics , Base Sequence , Circadian Clocks/genetics , Conserved Sequence , Flowers/physiology , Gene Expression Regulation, Plant , Genes, Plant , Phenotype , Photosynthesis/genetics , Plant Leaves/growth & development , Plant Roots/growth & development , RNA, Plant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...