Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(9): e0274524, 2022.
Article in English | MEDLINE | ID: mdl-36137100

ABSTRACT

Since first identified in 1879, plasma, the fourth state of matter, has been developed and utilised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen species and their effects can be retained and mediated through plasma-activated liquids (PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation and cancer therapy due to its rich and relatively long-lived reactive species components. This study sought to identify any potential antagonistic effect between antioxidative intracellularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can significantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to PAL. Although the intracellular antioxidative PtNPs showed no protective effect against PAL, this study contributes to further understanding of principle cell killing routes of PAL and discovery of potential PAL-related therapy and methods to inhibit side effects.


Subject(s)
Glioblastoma , Metal Nanoparticles , Plasma Gases , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Death , Humans , Lipid Peroxidation , Lipids , Nitrogen , Oxygen , Plasma Gases/pharmacology , Platinum , Reactive Oxygen Species/metabolism
2.
Food Chem ; 342: 128283, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33067041

ABSTRACT

Casein, ß-lactoglobulin and α-lactalbumin are major milk protein allergens. In the present study, the structural modifications and antigenic response of these bovine milk allergens as induced by non-thermal treatment by atmospheric cold plasma were investigated. Spark discharge (SD) and glow discharge (GD), as previously characterized cold plasma systems, were used for protein treatments. Casein, ß-lactoglobulin and α-lactalbumin were analyzed before and after plasma treatment using SDS-PAGE, FTIR, UPLC-MS/MS and ELISA. SDS-PAGE results revealed a reduction in the casein and α-lactalbumin intensity bands after SD or GD treatments; however, the ß-lactoglobulin intensity band remained unchanged. FTIR studies revealed alterations in protein secondary structure induced by plasma, particularly contents of ß-sheet and ß-turn. The UPLC-MS/MS results showed that the amino acid compositions decreased after plasma treatments. ELISA of casein and α-lactalbumin showed a decrease in antigenicity post plasma treatment, whereas ELISA of ß-lactoglobulin showed an increase in antigenicity. The study indicates that atmospheric cold plasma can be tailored to mitigate the risk of bovine milk allergens in the dairy processing and ingredients sectors.


Subject(s)
Atmosphere/chemistry , Caseins/chemistry , Caseins/immunology , Milk/chemistry , Plasma Gases/chemistry , Whey Proteins/chemistry , Whey Proteins/immunology , Allergens/chemistry , Allergens/immunology , Animals , Cattle , Milk/immunology
3.
Sci Rep ; 10(1): 6985, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332819

ABSTRACT

Cold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells.


Subject(s)
Clathrin/metabolism , Glioblastoma/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures , Nanotechnology/methods , Endocytosis/physiology , Humans , Plasma Gases , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...