Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Bioengineering (Basel) ; 10(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36671684

ABSTRACT

Tooth decay, or dental caries, is a widespread and costly disease that is reversible when detected early in its formation. Current dental caries diagnostic methods including X-ray imaging and intraoral examination lack the sensitivity and specificity required to routinely detect caries early in its formation. Thermophotonic imaging presents itself as a highly sensitive and non-ionizing solution, making it suitable for the frequent monitoring of caries progression. Here, we utilized a treatment protocol to produce bacteria-induced caries lesions. The lesions were imaged using two related three-dimensional photothermal imaging modalities: truncated correlation photothermal coherence tomography (TC-PCT) and its enhanced modification eTC-PCT. In addition, micro-computed tomography (µ-CT) and visual inspection by a clinical dentist were used to validate and quantify the severities of the lesions. The observational findings demonstrate the high sensitivity and depth profiling capabilities of the thermophotonic modalities, showcasing their potential use as a non-ionizing clinical tool for the early detection of dental caries.

2.
IEEE Trans Biomed Eng ; 69(9): 2755-2766, 2022 09.
Article in English | MEDLINE | ID: mdl-35196221

ABSTRACT

The ability to detect dental caries at early stages lies at the heart of minimal intervention dentistry, enabling the curing or arresting of carious lesions before they advance to the cavity stage. Enhanced truncated-correlation photothermal coherence tomography (eTC-PCT) using mid-wave infrared (MWIR) cameras has recently been shown to offer tomographic visualization of early caries. The tomographic slicing ability of such systems, however, is believed to be limited by direct radiative thermal emission through the translucent dental enamel in the 3-5 µm MWIR spectral range. Such radiative emissions can dominate the delayed conductive thermal contributions needed for tomographic reconstruction of internal dental defects. It has been hypothesized that long-wave infrared (LWIR) eTC-PCT systems may offer better tomographic performance by taking advantage of the intrinsic attenuation of direct radiative emission by dental enamel in the LWIR spectral range, enabling more effective delayed conductive thermal contributions from subsurface caries. More than an order of magnitude lower cost of the system is another key attribute of LWIR eTC-PCT which can open the door for downstream translation of the technology to clinics. In this report, we offer a systematic comparison of the performance/effectiveness of caries detection with LWIR and MWIR eTC-PCT systems for detecting natural caries, bacterial caries, and artificially demineralized enamel surfaces. Our results suggest that the low-cost LWIR based eTC-PCT system provides 3D visualization and 2D slice-by-slice images of early caries and internal micro-cracks similar to those obtained from the more expensive MWIR-based eTC-PCT system, albeit with ∼1.3dB lower signal-to-noise ratio.


Subject(s)
Dental Caries , Dental Caries/diagnostic imaging , Humans , Tomography, Optical Coherence/methods , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...