Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 43(1): 375-389, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32974885

ABSTRACT

In the lowlands of Nepal (Terai), the WHO drinking water guideline concentration of 10 µg/L for arsenic (As) is frequently exceeded. Since their introduction in 2006, iron-assisted bio-sand filters (Kanchan filters) are widely used to treat well water in Nepal. The filters are constructed on the basis of As-removal with corroding zero-valent iron (ZVI), with water flowing through a filter bed of iron nails placed above a sand filter. According to several studies, the performance of Kanchan filters varies greatly and depends on the size of the iron nails, filter design, water composition, and operating conditions, leading to concerns about their actual efficiency. This study examined 38 Kanchan household filters for which insufficient As-removal was reported, to evaluate the reasons for limited removal efficiency and to define measures for improved performance. The measured arsenic removal ranged from 6.3% to 98.5%. The most relevant factors were the concentrations of As and Fe in the raw water, with the best removal efficiency observed for water with low As (123 µg/L) and high Fe (5.0 mg/L). Although the concentrations of other elements, pH, flow rates, and contact time with ZVI also played a role, the combined evidence indicated that the reactivity of the frequently drying nail beds between filtrations was insufficient for efficient As-removal. Optimized filters with added top layers of sand and raised water outlets with flow restrictions to keep nails permanently immersed and to increase contact times, should be able to achieve higher and more consistent arsenic removal efficiencies.


Subject(s)
Arsenic/isolation & purification , Filtration/methods , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Arsenic/analysis , Arsenic/chemistry , Family Characteristics , Filtration/instrumentation , Iron/analysis , Iron/chemistry , Nepal , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/instrumentation
2.
Article in English | MEDLINE | ID: mdl-17952789

ABSTRACT

In the last 20 years, the widespread adoption of shallow tubewells in Nepal Terai region enabled substantial improvement in access to water, but recent national water quality testing showed that 3% of these sources contain arsenic above the Nepali interim guideline of 50 microg/L, and up to 60% contain unsafe microbial contamination. To combat this crisis, MIT, ENPHO and CAWST together researched, developed and implemented a household water treatment technology by applying an iterative, learning development framework. A pilot study comparing 3 technologies against technical, social, and economic criteria showed that the Kanchan Arsenic Filter (KAF) is the most promising technology for Nepal. A two-year technical and social evaluation of over 1000 KAFs deployed in rural villages of Nepal determined that the KAF typically removes 85-90% arsenic, 90-95% iron, 80-95% turbidity, and 85-99% total coliforms. Then 83% of the households continued to use the filter after 1 year, mainly motivated by the clean appearance, improved taste, and reduced odour of the filtered water, as compared to the original water source. Although over 5,000 filters have been implemented in Nepal by January 2007, further research rooted in sustainable development is necessary to understand the technology diffusion and scale-up process, in order to expand access to safe water in the country and beyond.


Subject(s)
Arsenic/isolation & purification , Water Purification/methods , Water Supply/analysis , Arsenic/chemistry , Enterobacteriaceae/isolation & purification , Filtration/instrumentation , Filtration/methods , Nepal , Reproducibility of Results , Water Microbiology , Water Pollution, Chemical/analysis , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...