Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(12): e2209188120, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36913568

ABSTRACT

Local chemical short-range ordering (SRO) and spatial fluctuations of planar fault energy are important features of multi-element and metastable complex concentrated alloys (CCAs). Arising from them, dislocations in such alloys are distinctively wavy in both static and migrating conditions; yet, such effects on strength have remained unknown. In this work, molecular dynamics simulations are used to show that the wavy configurations of dislocations and their jumpy motion in a prototypic CCA of NiCoCr are due to the local fluctuations of the energy of SRO shear-faulting that accompanies dislocation motion, with the dislocation getting pinned at sites of hard atomic motifs (HAMs) associated with high local shear-fault energies. Unlike the global averaged shear-fault energy which in general will subdue on successive dislocation passes, the local fluctuations in the fault energy always remain in a CCA, thus offering a strength contribution that is unique in such alloys. Analysis of the magnitude of this form of dislocation resistance shows that this is dominating over contributions due to elastic misfit of alloying elements and is in good agreement with strengths predicted from molecular dynamics simulations and experiments. This work has unfolded the physical basis of strength in CCAs, which is important for the development of these alloys into useful structural materials.

2.
Sci Adv ; 9(2): eabn5390, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36630498

ABSTRACT

Cells are responsive to the mechanical environment, but the methods to detect simultaneously how different organelles react in mechanobiological processes remain largely unexplored. We herein report a dual organelle-targeting fluorescent probe, (E)-1-[3-(diethoxyphosphoryl)propyl]-4-[4-(diethylamino)styryl]pyridin-1-ium bromide (ASP-PE), for mechanical mapping in live cells. ASP-PE is aggregation-induced emission active and is sensitive to the local mechanical environment. It targets the plasma membrane (PM) and intracellular mitochondria in cells by its phosphonate moiety and pyridinium. In this work, through ASP-PE staining, changes of membrane tension in the PM and mitochondria in response to varied osmotic pressure and substrate stiffness are visualized using fluorescence lifetime imaging microscopy. The mechanobiological importance of actin filaments and microtubules in the PM and mitochondria is also investigated using this probe. Computational simulations are applied to study the sensing mechanism of the probe. This study introduces a unique tool for mapping the membrane tension in the PM and mitochondria together, providing us great opportunities to study organelle's interactions in mechanobiology.

3.
Bioinspir Biomim ; 16(4)2021 06 17.
Article in English | MEDLINE | ID: mdl-33975299

ABSTRACT

Stimuli-responsive actuating materials offer a promising way to power insect-scale robots, but a vast majority of these material systems are too soft for load bearing in different applications. While strategies for active stiffness control have been developed for humanoid-scale robots, for insect-scale counterparts for which compactness and functional complexity are essential requirements, these strategies are too bulky to be applicable. Here, we introduce a method whereby the same actuating material serves not only as the artificial muscles to power an insect-scale robot for load bearing, but also to increase the robot stiffness on-demand, by bending it to increase the second moment of area. This concept is biomimetically inspired by how insect wings stiffen themselves, and is realized here with manganese dioxide as a high-performing electrochemical actuating material printed on metallized polycarbonate films as the robot bodies. Using an open-electrodeposition printing method, the robots can be rapidly fabricated in one single step in ∼15 minutes, and they can be electrochemically actuated by a potential of ∼1 V to produce large bending of ∼500° in less than 5 s. With the stiffness enhancement method, fast (∼5 s) and reversible stiffness tuning with a theoretical increment by ∼4000 times is achieved in a micro-robotic arm at ultra-low potential input of ∼1 V, resulting in an improvement in load-bearing capability by about 4 times from ∼10µN to ∼41µN.


Subject(s)
Insecta , Robotics , Wings, Animal , Animals , Muscles
4.
ACS Appl Mater Interfaces ; 12(27): 30557-30564, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32538611

ABSTRACT

Material-based, light-driven actuators have been a recent research focus for the development of untethered, miniaturized devices and microrobots. Recently introduced nickel hydroxide/oxyhydroxide (Ni(OH)2/NiOOH) and cobalt oxides/hydroxides (CoOx(OH)y) are promising light-driven actuators, as they exhibit large and rapid actuation response and are inexpensive to fabricate by fast electrodeposition. However, as their actuation is due to the volume change accompanying the light-induced desorption of intercalated water in their turbostratic structures, their actuation reduces over time as crystallization takes place slowly, which lowers the amount of water held. Here, we introduce nickel-doped cobalt oxides/hydroxides (NiCoOx(OH)y) actuator that exhibits similar turbostratic crystal structures and actuation magnitude as CoOx(OH)y, but with much slower crystallization and hence significantly more stable actuation than CoOx(OH)y or Ni(OH)2/NiOOH. The new actuator exhibits much better applicability than the Co and Ni counterparts, and the present work shows that a stabilized turbostratic structure is a key for achieving high light-driven actuation in transition-metal oxide/hydroxide actuators.

5.
Biomater Sci ; 7(6): 2545-2551, 2019 May 28.
Article in English | MEDLINE | ID: mdl-30973560

ABSTRACT

The blood thinning properties of pentoxifylline have been attributed to its ability to increase the deformability of red blood cells and improve their rheological properties. To interpret and substantiate these observations a novel approach is taken by measuring the stiffness of individual red blood cells from healthy humans before and after subscription to pentoxifylline for nine days. Atomic force microscopy nanoindentation experiments reveal that the elastic modulus of the red blood cells decreased by 30%-40%, after pentoxifylline subscription. This decrease in elastic modulus is related to the ability of pentoxifylline to increase the production of ATP and lower Ca2+ concentrations in red blood cells. The present in vivo experiments provide a deeper understanding of the mode of action of pentoxifylline, and pave the way to using indentation in medicine. A further unique advantage of this study is that it was performed on healthy volunteers, rather than requiring in vitro incubation.


Subject(s)
Anticoagulants/pharmacology , Elastic Modulus/drug effects , Erythrocytes/drug effects , Pentoxifylline/pharmacology , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Erythrocytes/metabolism , Humans , Rats
6.
J Mech Behav Biomed Mater ; 80: 128-136, 2018 04.
Article in English | MEDLINE | ID: mdl-29414468

ABSTRACT

Many features of orthopaedic implants have been previously examined regarding their influence on migration in trabecular bone under axial loading, with screw thread design being one of the most prominent examples. There has been comparatively little investigation, however, of the influence that implant tip design has on migration under axial loads. We present a novel fracture mechanics model that explains how differences in tip design affect the force required for axial penetration of porous, compressible solids similar to trabecular bone. Three tip designs were considered based on typical 5 mm diameter orthopaedic locking screws: flat and conical tip designs, as well as a novel elastomeric tip. Ten axial penetration trials were conducted for each tip design. In order to isolate the effect of tip design on axial migration from that of the threads, smooth steel rods were used. Tip designs were inserted into polyurethane foam commonly used to represent osteoporotic trabecular bone tissue (ASTM Type 10, 0.16 g/cc) to a depth of 10 mm at a rate of 2 mm/min, while force and position were recorded. At maximum depth, elastomeric tips were found to require the greatest force for axial migration (mean of 248.24 N, 95% Confidence Interval [CI]: 238.1-258.4 N), followed by conical tips (mean of 143.46 N, 95% CI: 142.1-144.9 N), and flat tips (mean of 113.88 N, 95% CI: 112.2-115.5 N). This experiment was repeated in cross-section while recording video of material compaction through a transparent window. Strain fields for each tip design were then generated from these videos using digital image correlation (DIC) software. A novel fracture mechanics model, combining the Griffith with porous material compaction, was developed to explain the performance differences observed between the three tip designs. This model predicted that steady-state stress would be roughly the same (~ 4 MPa) across all designs, a finding consistent with the experimental results. The model also suggested that crack formation and friction are negligible mechanisms of energy absorption during axial penetration of porous compressible solids similar to trabecular bone. Material compaction appears to be the dominant mechanism of energy absorption, regardless of tip design. The cross-sectional area of the compacted material formed during migration of the implant tip during axial penetration was shown to be a strong determinant of the force required for migration to occur (Pearson Coefficient = 0.902, p < .001). As such, implant tips designed to maximize the cross-sectional area of compacted material - such as the elastomeric and conical tips in the present study - may be useful in reducing excessive implant migration under axial loads in trabecular bone.


Subject(s)
Cancellous Bone/physiology , Fractures, Bone/physiopathology , Models, Biological , Prostheses and Implants , Biomechanical Phenomena/physiology , Bone Screws , Equipment Design , Humans , Stress, Mechanical , Weight-Bearing
7.
Sci Robot ; 3(18)2018 05 30.
Article in English | MEDLINE | ID: mdl-33141705

ABSTRACT

Light-induced actuators that are self-contained and compact can be used as artificial muscles for microrobotics because their actuation can be induced wirelessly, which reduces the complexity of the device or system. Here, we report a material system, nickel hydroxide-oxyhydroxide, that could actuate because of a volume change stimulated by illumination of visible light of low intensities. The actuating material here exhibited a turbostratic crystal structure capable of intercalating water, and we show that the intercalated water can be rapidly and reversibly desorbed into the environment under visible light of low intensities, resulting in fast actuation driven wirelessly by light. By electroplating the actuating material on passive substrates, we have fabricated film actuators capable of undergoing reversible bending and curling with an intrinsic actuating stress of 5 to 65 megapascals at response rates in the order of tens to hundreds of degrees per second depending on the light intensity, which are comparable to mammalian skeletal muscles. By intentionally electroplating the nickel hydroxide-oxyhydroxide on selected areas of the substrate, a hinged actuator that can lift objects ~100 times the weight of the actuating material is achieved. Other demonstrations show the potential uses in robotic devices, including sunlight-induced actuation, a biomimicked "sensitive plant" with rapid leaf movement, and a light-powered walking bot.

8.
Sci Rep ; 7(1): 12402, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963517

ABSTRACT

While cells are known to sense and respond to their niche including the matrix and the mechanical microenvironment, whether they preferentially sense and react to the stiffness of their microenvironment regardless of its intrinsic material properties is unknown. In this work, protein micropillar arrays with independently controllable stiffness via alterations in pillar height and elastic modulus via laser power used during photochemical cross-linking, were fabricated using a recently developed multiphoton-based 3D protein micro-patterning technology. Human dermal fibroblasts were cultured on these micropillar arrays and the specific interactions between cells and the protein micropatterns particularly on the formation and maturation of the cell-matrix adhesions, were investigated via immunofluorescence staining of the major molecular markers of the adhesions and the measurement of their cluster size, respectively. Our results showed that the cluster size of focal adhesions increased as the stiffness of the micropillar arrays increased, but it was insensitive to the elastic modulus of the protein micropillars that is one of the intrinsic material properties. This finding provides evidence to the notion that cells preferentially sense and react to the stiffness, but not the elastic modulus of their microenvironment.


Subject(s)
Fibroblasts , Proteins/metabolism , Skin/cytology , Actins/metabolism , Cell Communication , Cell Culture Techniques , Cells, Cultured , Cellular Microenvironment , Elastic Modulus , Fibroblasts/cytology , Fibroblasts/physiology , Focal Adhesions , Humans , Integrin alphaV/metabolism , Integrin beta1/metabolism , Paxillin/metabolism
9.
ACS Appl Mater Interfaces ; 9(35): 29469-29480, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28809529

ABSTRACT

Cell-matrix adhesions are important structures governing the interactions between cells and their microenvironment at the cell-matrix interface. The focal complex (FC) and focal adhesion (FA) have been substantially investigated in conventional planar culture systems using fibroblasts as an in vitro model. However, the formation of more mature types of cell-matrix adhesion in human mesenchymal stem cells (hMSCs), including fibrillar adhesion (FBA) and 3D matrix adhesion (3DMA), have not been fully elucidated. Here we investigate the niche factor(s) that influence(s) the maturation of FBA and 3DMA by using multiphoton fabrication-based micropatterning. First, the bovine serum albumin (BSA)-made protein micropatterns were functionalized by incorporating various concentrations of fibronectin (FN) in fabrication solution. The amount of cross-linked FN is positively correlated with the initial concentration of FN in the reaction liquid, as verified by immunofluorescence staining. On the other hand, the anisotropic FN-functionalized micropatterns were fabricated by varying the length (i.e., in-plane stiffness) and height (i.e., bending stiffness) of micropatterns, respectively. Finally, hMSCs were cultured on these micropatterns for 2 h and 1 day to determine the formation of FBA and 3DMA, respectively, using immunofluorescence staining. Results demonstrated that FN-functionalized micropatterns with high anisotropy in x-y dimension benefit FBA maturation. Furthermore, niche factors such as higher bending and in-plane stiffness and the presence of abundant fibronectin have a positive effect on the maturation of FN-based cell-matrix adhesion. These findings could provide some new perspectives on designing platforms for further cell niche study and rationalizing scaffold design for tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Animals , Cattle , Cell Adhesion , Extracellular Matrix , Fibroblasts , Fibronectins , Humans , Tissue Engineering
11.
Int J Nanomedicine ; 11: 6533-6545, 2016.
Article in English | MEDLINE | ID: mdl-27994457

ABSTRACT

The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell-protein or cell-cell contact was also demonstrated.


Subject(s)
Carcinogens/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Leukemia/pathology , Mechanotransduction, Cellular/drug effects , Nanotechnology/methods , Tetradecanoylphorbol Acetate/pharmacology , Animals , Antigens, CD , Blotting, Western , Cadherins/metabolism , Cattle , Humans , K562 Cells , Leukemia/drug therapy , Optical Tweezers , Serum Albumin, Bovine/metabolism
12.
Biophys J ; 110(12): 2769-2778, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27332135

ABSTRACT

Although the volume of living cells has been known to heavily influence their behavior and fate, a method allowing us to control the cell size in a programmable manner is still lacking. Here, we develop a technique in which precise changes in the cellular volume can be conveniently introduced by varying the voltage applied across a Nafion membrane that separates the culture medium from a reservoir. It is found that, unlike sudden osmotic shocks, active ion transport across the membrane of leukemia K562 cells will not be triggered by a gradual change in the extracellular osmolarity. Furthermore, when subjected to the same applied voltage, different lung and nasopharyngeal epithelial cancer cells will undergo larger volumetric changes and have a 5-10% higher death rate compared to their normal counterparts. We show that such distinct response is largely caused by the overexpression of aquaporin-4 in tumor cells, with knockout of this water channel protein resulting in a markedly reduced change in the cellular volume. Finally, by taking into account the exchange of water/ion molecules across the Nafion film and the cell membrane, a theoretical model is also proposed to describe the voltage-induced size changes of cells, which explain our experimental observations very well.


Subject(s)
Biological Transport, Active/physiology , Cell Death/physiology , Cell Membrane/metabolism , Cell Size , Electroosmosis/methods , Aquaporin 1/metabolism , Aquaporin 2/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism , Cell Line, Tumor , Cell Membrane Permeability/physiology , Electricity , Electroosmosis/instrumentation , Equipment Design , Fluorocarbon Polymers , Gene Knockout Techniques , Humans , Ions/metabolism , Membranes, Artificial , Models, Biological , Water/metabolism
13.
Adv Mater ; 28(26): 5315-21, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27146431

ABSTRACT

Surface-charge-induced reversible and millimeter-scale deflection is found in a bilayered Ni cantilever upon cyclic potential triggering. The nanowire-forest structure, in which unidirectional primary nanowires are evenly separated by cross-linking subnanowires, ensures fast ion transport leading to a record-high strain response time ≈0.1 s. The actuation is sustainable beyond 800 cycles; the strain energy is compatible with human skeletal muscles.

14.
Sci Rep ; 6: 20063, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26817674

ABSTRACT

Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.


Subject(s)
Biomechanical Phenomena , Microscopy, Fluorescence, Multiphoton , Proteins/chemistry , Single-Cell Analysis , Animals , Cattle , Cell Line , Elastic Modulus , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence, Multiphoton/instrumentation , Microscopy, Fluorescence, Multiphoton/methods , Rabbits
15.
ACS Nano ; 9(4): 3984-95, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25758028

ABSTRACT

Current metallic-based electrochemical actuators are limited to nanoporous gold/platinum with randomly distributed pores, where the charge-induced reversible strain is mainly due to the nonfaradic charging/discharging processes along the capacitive electrochemical double layer. Here, we report an electrochemical actuating property of nanohoneycomb-structured nickel, with the actuation mechanism mainly due to a pseudocapacitive behavior by means of reversible faradic redox reactions. By using a dual-template synthesis method, a bilayered cantilever, comprising a nanohoneycomb layer backed by a solid layer of the same metal, was fabricated. Reversible bending of the cantilever upon cyclic potential triggering was observed. The strain of the cantilever increases nonlinearly with both potential and charge due to redox reactions. The maximum strain that can be achieved under a certain scan rate complies with a linear relationship with the capacity. Benefiting from the stable Ni(II)/Ni(III) redox couples at the electrode surface, the reversible actuation is very stable in hydroxide solutions.

16.
Stem Cells ; 32(8): 2164-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24737495

ABSTRACT

Intervertebral disc degeneration is associated with back pain and radiculopathy which, being a leading cause of disability, seriously affects the quality of life and presents a hefty burden to society. There is no effective intervention for the disease and the etiology remains unclear. Here, we show that disc degeneration exhibits features of fibrosis in humans and confirmed this in a puncture-induced disc degeneration (PDD) model in rabbit. Implantation of bone marrow-derived mesenchymal stem cells (MSCs) to PDD discs can inhibit fibrosis in the nucleus pulposus with effective preservation of mechanical properties and overall spinal function. We showed that the presence of MSCs can suppress abnormal deposition of collagen I in the nucleus pulposus, modulating profibrotic mediators MMP12 and HSP47, thus reducing collagen aggregation and maintaining proper fibrillar properties and function. As collagen fibrils can regulate progenitor cell activities, our finding provides new insight to the limited self-repair capability of the intervertebral disc and importantly the mechanism by which MSCs may potentiate tissue regeneration through regulating collagen fibrillogenesis in the context of fibrotic diseases.


Subject(s)
Intervertebral Disc Degeneration/therapy , Intervertebral Disc/pathology , Mesenchymal Stem Cell Transplantation/methods , Animals , Compressive Strength , Disease Models, Animal , Fibrosis/therapy , Humans , Immunohistochemistry , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/pathology , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Rabbits , Range of Motion, Articular , Transcriptome
17.
J Chem Phys ; 138(16): 164314, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23635145

ABSTRACT

Molecular dynamics simulations of small Cu nanoparticles using three different interatomic potentials at rising temperature indicate that small nanoparticles can undergo solid-solid structural transitions through a direct geometrical conversion route. The direct geometrical conversion can happen for cuboctahedral nanoparticles, which turn into an icosahedra shape: one diagonal of the square faces contracts, and the faces are folded along the diagonal to give rise to two equilateral triangles. The transition is a kinetic process that cannot be fully explained through an energetic point of view. It has low activation energy and fast reaction time in the simulations. The transition mechanism is via the transmission of shear waves initiated from the particle surface and does not involve dislocation activity.


Subject(s)
Copper/chemistry , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , Temperature , Molecular Structure
18.
Nanotechnology ; 24(21): 215602, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23619572

ABSTRACT

Anodic porous alumina, which exhibits a characteristic nanohoneycomb structure, has been used in a wide range of nanotechnology applications. The conventional fabrication method of mild anodization (MA) requires a prolonged anodization time which is impractical for batch processing, and self-ordered porous structures can only be formed within narrow processing windows so that the dimensions of the resultant structures are extremely limited. The alternative hard anodization (HA) may easily result in macroscopic defects on the alumina surface. In this work, by systematically varying the anodization conditions including the substrate grain orientation, electrolyte concentration, temperature, voltage, and time, a new oxalic acid based anodization method, called high acid concentration and high temperature anodization (HHA), is found, which can result in far better self-ordering of the porous structures at rates 7-26 times faster than MA, under a continuous voltage range of 30-60 V on (001) oriented Al grains. Unlike HA, no macroscopic defects appear under the optimum self-ordered conditions of HHA at 40 V, even for pore channels grown up to high aspect ratios of more than 3000. Compared to MA and HA, HHA provides more choices of self-ordered nano-porous structures with fast and mechanically stable formation features for practical applications.


Subject(s)
Aluminum Oxide/chemistry , Crystallization/methods , Electroplating/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Sulfuric Acids/chemistry , Electrodes , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
19.
Nanomedicine ; 9(7): 864-74, 2013 10.
Article in English | MEDLINE | ID: mdl-23579203

ABSTRACT

UNLABELLED: Although significant advances have been made in understanding the molecular mechanisms that influence tongue squamous cell carcinoma (TSCC) metastasis, less is known about the association between the cellular elastic modulus and TSCC metastasis. Atomic force microscopy (AFM) nanoindentation via the rate-jump method was used to detect the elastic modulus of TSCC cells from patients and cell lines with different metastatic potentials. TSCC cells with higher metastatic potential showed decreases in the elastic modulus compared to TSCC cells with lower metastatic potential. Moreover, the decrease in elastic modulus was accompanied with epithelial-mesenchymal transition (EMT), cytoskeleton (F-actin and ß-tubulin) changes, small nucleus size and large nucleus/cytoplasm (N/C) ratio. The present findings demonstrate a close relationship between the cellular elastic modulus and the metastasis of TSCC. The elastic modulus detected by AFM nanoindentation via the rate-jump method can potentially be used to grade the metastatic potential of TSCC. FROM THE CLINICAL EDITOR: This team of investigators report the use of an atomic force microscopy-based method to determine the elastic modulus of tongue squamous cell carcinoma cells, and demonstrate that such cells with higher metastatic potential show decreased elastic modulus compared to cells with lower metastatic potential.


Subject(s)
Carcinoma, Squamous Cell/pathology , Elastic Modulus , Tongue Neoplasms/pathology , Actins/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/ultrastructure , Cell Line, Tumor , Cell Nucleus/pathology , Cell Nucleus Size , Cytoskeleton/pathology , Epithelial-Mesenchymal Transition , Humans , Microscopy, Atomic Force , Nanotechnology , Neoplasm Metastasis , Tongue Neoplasms/ultrastructure , Tubulin/metabolism
20.
Tissue Eng Part A ; 17(5-6): 777-88, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20964578

ABSTRACT

Mesenchymal stem cell (MSC)-based engineering is promising for cartilage repair. However, the compositional mechanical relationship of the engineered structures has not been extensively studied, given the importance of such relationship in native cartilage tissues. In this study, a novel human MSC-collagen microsphere system was used to study the compositional mechanical relationship during in vitro chondrogenic differentiation using histological and biochemical methods and a microplate compression assay. The mechanical property was found positively correlating with newly deposited cartilage-relevant matrices, glycosaminoglycan, and type II collagen, and with the collagen crosslinker density, in agreement with the presence of thick collagen bundles upon structural characterization. On the other hand, the mechanical property negatively correlates with type I collagen and total collagen, suggesting that the initial collagen matrix scaffold of the microsphere system was being remodeled by the differentiating human MSCs. This study also demonstrated the application of a simple, sensitive, and nondestructive tool for monitoring the progression of chondrogenic differentiation of MSCs in tissue-engineered constructs and therefore contributes to future development of novel cartilage repair strategies.


Subject(s)
Cell Differentiation/drug effects , Chondrogenesis/drug effects , Collagen/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Microspheres , Animals , Biomechanical Phenomena/drug effects , Collagen Type I/metabolism , Collagen Type II/metabolism , Cross-Linking Reagents/metabolism , Glycosaminoglycans/metabolism , Humans , Immunohistochemistry , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure , Middle Aged , Rats , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...